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Abstract 

 

This thesis develops the Fuel Interdiction and Resulting Cascading Effects 

(FI&RCE) model. The study details the development and experimental testing of a 

framework for assessing the interdiction of a refined petroleum production and 

distribution network.  FI&RCE uses a maximum flow mathematical programming 

formulation that models the transit of fuels from points of importation and refinement 

through a polyduct distribution network for delivery across a range of end user locations.  

The automated model accommodates networks of varying size and complexity.  FI&RCE 

allows for parameters and factor settings that enable robust experimentation through 

implementation in MATLAB 2014 and the commercial solver CPLEX (Version 12.5).  

Experimental design allows the investigation of interdiction or disruption on supply and 

network infrastructure locations in order to support the strategic analytical needs of the 

user.  Given a target set, FI&RCE provides measured responses for the resulting fuel 

availability and a valuation of economic loss.  The value of economic loss feeds a 

Leontief based input-output model that assesses the cascading effects in the studied 

economy by implementing a mathematical program that optimizes the remaining 

industrial outputs.  FI&RCE demonstrates a framework to investigate the military and 

cascading effects of a fuel interdiction campaign plan using a realistic case study.   
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CASCADING EFFECTS OF FUEL NETWORK INTERDICTION 

I. Introduction 

1.1 Background 

Refined petroleum distribution networks are the economic lifeblood of the United States 

and many other countries.  The network that provides the commodities essential to modern life 

is transparent to most consumers.  Nearly every refined product consumed in the US is 

delivered via a complex pipeline network.  The gasoline, diesel, and heating oil that sustain 

American quality of life generally only travel by truck from a local distribution hub to the end 

user or retail location a few miles away (Cafaro and Cerda, 2004:3).  The efficiency of a 

petroleum pipeline system enables its presence in much of the world for use in oil and gas 

production and downstream delivery of refined products. 

Despite their efficiency, these distribution networks have demonstrated historically 

significant vulnerability.  Military organizations are particularly dependent on petroleum.  The 

US Department of Defense is among the world’s largest organizational consumers of refined 

petroleum (Schwartz et al., 2011) and maintains its own complex distribution network.  The 

petroleum requirements of modern warfare have enticed the targeting strategies of military 

planners since at least the beginning World War II.  Early examples of this include the oil plan 

that emphasized the targeting of Germany’s refinery and synthetic fuel operations in Eastern 

Europe while the transportation plan affected German railway networks that delivered the 

refined products (Mark, 1992: 226).  By September of 1944, the Allies had reduced production 

of aviation gasoline required by the Luftwaffe, decreasing German refinery output to less than 

55% of military requirements (Hall, 1998: 226-227).  In the Pacific Theater, the combination of 

anti-ship mines, aerial bombardment, and naval interdiction to include US submarines reduced 
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the oil imports of Imperial Japan to a negligible level by the beginning of 1945 (Yergin, 1992: 

358).  By the time Curtis LeMay’s B-29s attacked the Japanese refinery and distribution 

networks beginning in May 1945, there was little ongoing production left to impede due to the 

strangulation of raw materials (Hall, 1998: 330). 

The Allied Forces of World War II were equally innovative in the delivery of refined 

products to their own Armies, which compromised half of all war stocks shipped across the 

Atlantic.  The adoption of standardized octane levels in vehicle development reduced the 

required number of fuel products to a single blend each of gasoline and diesel.  A complex 

pipeline system deployed from England to forward combat areas bypassed the heavily taxed 

truck transport system known as the Red Ball Express.  Truck shipments that did occur utilized 

the German-designed 5-gallon fuel jug (the ubiquitous Jerry can) that could be efficiently 

transferred by a single soldier between vehicles and units (Yergin, 1992: 382).  The only widely 

documented fuel shortage that significantly impacted Allied operations beyond the initial 

Normandy beachheads famously occurred when the Allied Ground Force overextended its lines 

of communication during the rapid breakout of Northern France in August of 1944.  Most 

operations ground to a temporary yet strategically critical halt, particularly in the Third Army 

sector under Patton.  The strategic ramifications of the fuel prioritization policies amongst the 

Allied Armies during this period are still debated by historians (Yergin, 1992: 386-388). 

The Suez Crisis in 1956 demonstrated the liability of reliance on petroleum tanker 

maritime traffic during the Egyptian seizure of the Suez Canal.  More significantly, this crisis 

also provided an early example of the inherent insecurity of pipeline systems when Syria 

prevented the flow of oil through the Iraq Petroleum Company’s pipeline (Yergin, 1992: 496).  

The net impact of this aspect of the Suez conflict was the demonstration of global dependency 
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on petroleum stock supplies and the vulnerability of the world economy based on production 

location in the Middle East and known delivery methods. 

The United States Government implemented an oil embargo as a strategic tool against 

Moammar Ghaddafi’s regime in Libya during the lead up to Operation El Dorado Canyon in 

1986.  The implementation of this embargo was two-fold.  President Reagan capitalized on the 

abundance of supply in the world oil market to justify the economic risk of banning imports of 

Libyan crude.  Additionally, the State Department invalidated the passports of all American 

citizens in Libya to include oil company employees and executives (Stanik, 2003: 70).  The 

diplomatic goal of these boycotts was to limit US economic investment in Libyan oil at a time 

when crude consuming states enjoyed a global surplus.  These actions successfully reduced oil 

traded to the US from Libya to less than one-third of its previous level and served as a 

diplomatic precursor to multiple military strikes (Stanik, 2003: 68).   

More recently, the Gulf War in 1991 saw the deliberate interdiction of much of Iraq’s 

downstream capacity including the targeting of 28 refinery locations.  Planners specifically 

limited the duration of humanitarian consequences by avoiding the complete destruction of 

refineries and abstaining from the targeting of crude production.  However, this strategy still 

caused major outages in electrical production and lengthy interruptions in the availability of 

gasoline, cooking and heating fuels, and other civilian commodities.  While the Gulf War did 

not last long enough to exhaust Iraqi military fuel stockpiles, the hardships inflicted on the 

civilian population endured well after the cessation of hostilities (Hall, 1998: 594). 

The United States and its allies do not monopolize the ability to interdict petroleum 

networks.  A terrorist attack on the Abqaiq oil field owned by Saudi Aramco failed to achieve 

an effect on production, but did cause the world oil markets to spike by over $2 per barrel (Al-
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Rodhan, 2006: 2).  Although the extensive layers of security thwarted the complex attack, the 

event compelled the Saudis and other major producers to reassess and expand the physical 

protection of their vast networks from increasingly emboldened extremist organizations.  A 

successfully executed attack on a large producer such as Saudi Arabia or a centralized 

production and transport center such as Al-Shuaiba in Kuwait could have global ramifications 

by impacting a significant portion of daily production.  A similar circumstance occurred 

recently when Kuwait’s oil refineries went offline due to a localized power outage in January 

2014 (Reuters, Kuwait, 2014).   

1.2 Problem Statement 

A petroleum product distribution network may be vulnerable for a variety of reasons.  

Conflict, natural disasters, economic conditions, and man-caused environmental catastrophes 

have all contributed to the disruption of petroleum network flow.  The occurrence of such 

disruptions is well-known and documented.  Additionally, modern military air power has 

shown a vast ability to effectively interdict these networks as described in Section 1.1.   The 

cascading effects are more difficult to assess and analyze. The impact of network disruption 

could follow an aerial interdiction campaign or a natural disaster such as a hurricane.   Strategic 

planners require the appropriate methodology and tools to determine how an interdiction or 

disruption incident will affect local and global markets in terms of the immediate impacts and 

cascading effects.  Military planners may require the ability to interdict the petroleum supplies 

of an armed adversary without crippling the local economy and quality of life.  Strategists may 

also intend to minimize impacts on the global economy and commodity trades.   

The problem statement has two primary components.  First, how would the interdiction 

of a refined petroleum distribution network impact the delivery of energy products to the end 
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user?  What end users would suffer the greatest impacts in functionality?  The second 

component considers other effects of these impacts.  What cascading effects would manifest 

throughout the economy of the country or region in question?  How would these effects impact 

the productivity of various industries in the country analyzed? 

These components form the basis of the network evaluation outcome:  How can military 

planners interdict a petroleum network in order to limit the availability of refined products to an 

adversary while controlling the magnitude of collateral economic and civil impacts both locally 

and around the globe? 

1.3 Methodology 

The methodology utilized includes development of a petroleum network model that 

considers multiple factors that are common to the distribution networks of refined petroleum 

throughout the world.  This proposed model includes refineries, storage facilities, and 

transportation networks using various supply methods, distribution points, and delivery 

parameters.  The proposed model includes a mathematical programming implementation that 

enables the user to experimentally interdict components of the petroleum product network in a 

manner consistent with the desired contingency. 

The network methodology provides insight on the immediate impacts on product flow 

through the network given disruptions within the network that are characterized as nodes or 

edges.  The proposed network representation predicts the impacts of interdicting the network 

and extends the results to estimate cascading effects.  This requires consideration of the 

supported economy and the affected network structure.  The methodology generates an estimate 

of the reduction in refined product flow to various locations in the interdicted network.  

Additionally, the approach must assess the network for an appropriate amount of time specified 
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by the user and update the conditions of the system appropriately.  Given the assessment of the 

degradation of network flow capacities, the results inform an input-output model that estimates 

the magnitude of cascading second and third order effects throughout dependent industries. 

Because the flow of refined petroleum products is completely integrated into so many 

other industries, the expected decline in availability is essential to determination of these 

cascading effects.  Examples of industries that directly rely on these products include 

transportation, power generation, agriculture, and mining.  In a modernized society, almost 

every other element of the national economy and daily life is affected to some degree by the 

availability of energy.  In lesser developed societies, the absence of consistent electrical grids 

and other basic utilities may be commonplace (Yergin, 1992: 634-635).   

Follow on modeling presents potential solutions to estimate cascading effects.  The 

effects are grouped into market effects including energy price fluctuations, corporate effects, 

and industry productivity effects.  Network effects estimate the impact on the system including 

storage depletion, distribution corrections, and end user availability. 

The contribution of this study is to extend the commodity flow into follow on industrial 

applications including electrical generation, agriculture, and transportation.  The associated 

consumer networks include uses in quality of life and labor participation impacts.  The 

commodity flow extends the network from the point of refinement, throughout the distribution, 

and ceases when the end user consumes the commodity.  The finalized methodology allows the 

evaluation of the cascading effects on the end user based on commodity availability and price.  

The analytical results differentiate which user requirements remained unmet and which users, 

including critical strategic locations, obtain sufficient refined petroleum commodities. 
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1.4 Assumptions and Limitations 

The primary assumption supporting this approach is access to highly precise data 

regarding the economy and petroleum network under consideration.  This assumption is limited 

by the availability of this type of data.  The specifics of petroleum production are often a 

closely held secret.  Statistics and production figures available from various sources are often 

estimates of information that is considered state or corporate secrets by the producer (Inkpen 

and Moffett, 2011: 388).  Data sets developed from open source publications require 

augmentation to allow for a reasonable assessment of the network capacities in order to 

estimate essential elements that are not otherwise available.  These augmentations can result 

from criteria based selections, engineering formulations, or from generalized values that are 

consistent with parameters found within refined petroleum networks that exist worldwide. 

The model does not influence the supply and availability of crude stocks.  Although the 

availability of crude supplies to refiners may change substantially within the context of the 

larger problem, the model assesses interdiction of the product distribution network with the 

assumption that the flow of crude stocks remains sufficient.  Because of the vast availability of 

petroleum stocks, the number of potential suppliers, and the hesitancy of state actors to 

intentionally target raw petroleum due to adverse effects to the raw source and the environment, 

this network begins at the point of refinement and assumes a consistent supply of crude reserves 

from current or future sources (Inkpen and Moffit, 2011: 11-19). 

The demand levels within the network are set at a constant that is determined from the 

pre-interdiction levels.  This assumption is necessary to implement an aggregate model and is 

based on the shadow demand that will exist in the event that the network cannot achieve known 

demand levels.  Additionally, this is an essential simplifying assumption for the Input-Output 
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model that requires consistency within the interactions generated by import-export market 

forces. 

The major limitation to this approach is its estimation of conditions at system capacity.  

The model determines how the multi-commodity network will perform given conditions that 

maximize its flow rate, particularly to selected critical nodes.  The interest of the modeler is to 

measure how interdictions to the network impact the delivery and availability of supplies.  In 

order to isolate the effects of the interdiction, it is necessary to remove the efficiency 

parameters that would otherwise determine the most lucrative shipping plan for the network 

manager.  The network manager instead seeks to maximize flow based on network capacities in 

anticipation of or reaction to a disruption.   

An additional limitation is that the model is best suited to a national oil company with 

complete process control of the hydrocarbon market from crude development through retail 

sale.  Fortunately, this structure is present in most national oil companies (NOCs),  which 

control 90% of the world reserves and dominate the downstream infrastructure of many 

regional economies (Inkpen and Moffit 55-63).  This may not be a serious restriction to a state 

run system in a time of conflict or emergency if there is sufficient reserve capital to maintain or 

increase production. 

1.5 Scope 

This model focuses primarily on the middle distillate sector of refined petroleum.  

Middle distillates include diesel fuel, heating oil, military jet fuels, and most varieties of 

military grade fuels.  Middle distillates are of particular interest due to their military 

application.  Because middle distillates compromise a significant portion of fuel oils and 

transportation fuel (Inkpen and Moffett, 2011: 456), the proposed network model examines the 
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effects of a network interruption on these specific sectors.  Although these products are of the 

most military significance, the production and distribution of gasoline is also included in order 

to provide a credible measurement of cascading effects.  The model considers the impacts on 

the availability of middle distillates along with gasoline and the cascading effects on the 

electrical generation, heating, transportation, and other critical sectors. 

1.6 Summary 

 The proposed methodology informs a mathematical model that implements a network 

solution for a relevant case study.  This case study uses experimental design to interdict a 

refined petroleum distribution network and records response data on relevant statistics.  These 

responses are analyzed to determine the types of targets that are most effective at network 

interdiction.  The data also provides the inputs necessary to analyze the significance of 

cascading effects within dependent networks.   

Using the methodology and analysis presented in this study, an analyst may gain insight 

on how various interdiction strategies will impact a multi-commodity network.  Additionally, 

the use of similar modeling techniques can inform campaign planning and national strategy 

when considering requirements to deplete an adversary’s capabilities or in anticipation of a 

natural disaster.  The estimates of availability and economic losses allow the analyst to gain 

perspective on the magnitude of cascading effects across a range of industries that are affected 

by a disruption of petroleum flow.  The consolidated results including availability and 

cascading effects will allow the analyst to provide a decision maker with a complete assessment 

of the effects of a disruption of refined petroleum flow.
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II. Literature Review 

2.1 Introduction 

A review of the literature identifies a diverse body of applicable operations research 

techniques and procedures that supports the scope of this research.  The distribution of refined 

petroleum products using network flow models, multi-commodity flow, and optimization of the 

downstream sector of the petroleum industry are well studied and documented.   Additionally, 

network interdiction appears consistently throughout the literature review in the form of general 

methodologies and specific applications that are relevant to petroleum network flow and 

pipeline systems.  Although the primary impacts of this type of interdiction are relatively 

straight-forward, the results are important in the determination of follow on effects.  The 

proposed model requires a suite of tools that will identify the impacts of various contingency 

events that may interdict the storage, distribution, end users, and supply availability of refined 

petroleum products in a specified economy.  The proposed model will assess cascading impacts 

in regional industries and global markets.  The literature includes extensive research on 

cascading effects that encompasses the span of critical infrastructure supported by refined 

petroleum networks.  Specific studies enumerate potential impacts on a variety of case specific 

locations.  Finally, there is a breadth of research considering global impacts of petroleum 

network disruptions.   

Many recent publications explore the impact of Hurricane Katrina on the oil and gas 

industry at refineries in the United States.  This information proves useful when considering the 

global impacts of localized disruptions. Additional studies examine potential market effects of a 

catastrophic event at a refinery location or distribution hub. These market impacts could 

envelop the industries of power generation, transportation, consumer energy products such as 
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heating and cooking fuels, as well as agriculture. The literature review revealed various 

optimization techniques and other modeling strategies necessary to inform the modeling 

approach and follow on analysis.  

A unique aspect of petroleum production and distribution is the almost universal 

applicability of operations research to identifying and implementing models and solutions. 

Optimization applies to refinery mix problems as well as distribution networks. Heuristics, 

empirical modeling, stochastic modeling, and simulation are all widely utilized tools in the 

development of transportation network efficiency.   Market databases are also required to meet 

the vast consumer demand for petroleum products in the world economy.  International Oil 

Companies (IOCs) include some of the world’s largest refiners such as Royal Dutch Shell and 

ExxonMobil.  National Oil Companies (NOCs) are state owned counterparts of IOCs and 

control most of the world’s petroleum reserves.   IOCs and NOCs invest significantly in the 

tools and expertise required to maximize the profitable output from downstream refinement and 

delivery operations (Inkpen and Moffett, 2011:465-470).  The span of resulting research allows 

researchers to identify nearly every field of operations research represented in both theoretical 

instances and applications to actual network disruption.   This theme appears consistently 

throughout the literature. 

2.2  Commodity Network Modeling 

  Network modeling is an essential topic that contributes to the development of the thesis 

methodology. Network optimization in many forms is a critical component of planning in oil 

production and refinement capacities. The downstream oil industry is a highly complex supply 

chain and requires highly efficient and integrated management of its operations in order for 

producers to gain market advantage (Neiro and Pinto, 2004).  More complex operations that 
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involve both production and refinement require specialized large scale optimization models that 

trace stock prices and market forces throughout the decision cycle of an international oil 

company (Inkpen and Moffett: 2011, 442). Network optimization appears prominently in 

literature regarding the petroleum industry and is heavily utilized and implemented throughout 

the decision cycle of fossil fuel energy production.  An additional application appears in 

scheduling of production and distribution of these products through a network of limited 

capacity.  The consideration of a network model is essential to determining the impacts and 

cascading effects due to disruption.  Therefore, an appropriate network model should consider a 

wide range of refinement and distribution capabilities while remaining sufficiently versatile for 

application in a range of scenarios.  

The refined petroleum distribution network of the United States is based almost entirely 

on an extensive and robust network of liquid fuel pipelines that move products from the point 

of refinement almost all the way to the point of sale. Shipments travel the last few miles in a 

truck from the local distribution node to a fueling station where they are accessible to the 

consumer (Cafaro and Cerda, 2004).   A similar supply chain is present in much of the world as 

NOCs strive for competitive systems of distribution.  Rail traffic occasionally supplements 

interregional pipeline delivery of refined petroleum products.  However there are limited global 

locations with the sufficient rail infrastructure to maintain product flow that is comparable to a 

major pipeline (Trench, 2001: 2).  For this reason, it is unlikely that a rail solution could replace 

a disrupted pipeline and impossible to achieve with truck transportation.  Rail and truck 

alternatives can provide limited supply capability that is sufficient to maintain a military 

apparatus in economies where the platforms are available in sufficient numbers.  However, the 
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terminals and road networks necessary to load and transport these platforms are vulnerable to 

disruption as well. 

Refined petroleum products fit a category of problem defined as a multi-commodity 

flow.  The multi-commodity flow problem is described as a supply, distribution, and storage 

network that is commonly utilized by multiple products.   The potential size and complexity of 

these types of models have increased with the expansion of applications.  Robust computational 

capabilities accommodate the increasing size of these problems, which are increasingly 

implemented among various industries (McBride: 1998, 33).  Familiar petroleum products such 

as diesel, gasoline, and fuel oil transit common production and distribution facilities from the 

point of refinement through receipt by the end user.  These products each traverse an 

independent network of storage facilities while sharing common transportation means through 

multi-product polyduct pipelines (Cafaro and Cerda, 2004).   

A mathematical program formulation can represent the multi-commodity flow for N 

networks of K number of commodities sharing common infrastructure.  Each product is 

modeled as an exclusive sub-network component of the multi-commodity flow.  This network 

requires the construction of a matrix, N, that represents the sub-networks N1 through NK as 

described in diagonal matrix (1) .  The interactions within N can allow for each network to 

compete for resources within the a network formulation while utilizing available storage and 

production capacity (McBride: 1998, 33).   
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Software packages are available to solve large multi-commodity network flow problems 

and can obtain solutions to problem sets with large numbers of variables, nodes, and 

constraints.  Many competing algorithms exist to solve this type of problem program, including 

those with the CPLEX commercial solver.  McBride presents comparisons of commercial 

algorithm applications, showing viable options for solving industry applications of increasing 

size (McBride: 1998, 33:35).   

Mixed integer linear programs (MILPs) and non-linear programs are highly applicable 

to petroleum multi-commodity flow because they allow the modeler to determine which 

elements of the network are operable for a particular product at any given time.  Because 

refineries, pipelines and distribution hubs usually process products sequentially, the MILP 

allows analysts to specify which elements of the network will handle specific products over an 

appropriate timeframe using a binary decision variable.  This results in a scheduling plan that 

can accommodate demand and implement the profitable distribution of refined products to the 

end user that meets the constraints of production runs and product batch availability.  Magatao, 

et al. (2006) proposed this framework for use in commodity scheduling across a pipeline 

network.  Cafaro and Cerda (2004) also employed this concept into an integrated network by 

introducing an MILP that integrates multiple pipelines and products using continuous 

formulations.  This result predicted the effects on depot storage facilities that service a variety 

of end users.  The utility of this function to an interdiction modeler is dependent upon the 

specificity of available data and the optimization function utilized.  Batch scheduling is a 

necessity in efficient distribution planning, but not essential to a model of maximum flow.  

Cafaro and Cerda (2012) consider a technique to develop mixed integer linear or non-

linear programs to develop models capable of scheduling and programming the network supply 
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chain that supports the vast oil and gas demands of the North American consumer. The study 

detailed a robust optimization model of a mesh-structured pipeline network that resources four 

oil refined products, four destinations, and a pair of refineries. A mesh-structured pipeline is 

defined as a network consisting of multiple interconnected distribution systems servicing 

production sources and providing delivery to various destinations.  The mesh-structure also 

includes storage capabilities that allow for the influx of products into the distribution network 

as required.  The mesh-structure is present in most distribution networks and is particularly 

applicable for commercial aviation and military airlift where significant amounts of various fuel 

types require ample storage located along a complex supply chain (Inkpen and Moffet, 2011: 

495-496).  The formulation includes an iterative list of constraints available from industry on 

what products can use various transmission nodes and links and in what capacity.  This solution 

enables producers to improve integration of oil production, transportation, and refinement in 

their planning and decision making (Cafaro and Cerda, 2012).  

Neiro and Pinto (2004) provide a generic model of a petroleum supply chain that 

utilizes mixed integer techniques to optimize supply operations in consideration of the complete 

process. Their implementation of non-linear techniques allows for additional consideration of 

the variability in the supply chain and market effects.  The article encompasses the process from 

the point of exploration and traces the commodity stream through refinement and distribution 

networks that are essential to industry success. Their problem statement envelops the 

formidable decision making process required to obtain, refine, blend, and distribute multiple 

products to a vast network of storage locations and consumers. The conclusion promotes the 

continuous sharing of information along the supply chain to best support the decision process at 

each step of production (Neiro and Pinto, 2004). 
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The Neiro-Pinto model includes elements of the processing unit reduced to a single 

refinery model, a tank model that mixes refined ingredients and stores final products, and a 

pipeline model that distributes these products throughout the supply chain, where profit is 

optimized.  This approach is applicable to the current study, because it allows the consideration 

of specific nodes capable of processing middle distillates.  The results indicate that coordinated 

strategies that consider planning and production throughout all stages of the process are 

necessary to maximize the productivity and profit of a petroleum supply chain (Neiro and Pinto, 

2004). The formulation provides justification of conservation of flow applicability to refined 

petroleum products.  Additionally, the network constraints must meet demand requirements in 

order to remain feasible.  These concepts are reflective of common practice within the 

downstream petroleum industry.   

 Al-Qahtani and Elkamel (2008) develop a general petroleum network model.  They 

described a transforming energy marketplace where refiners and producer remain competitive 

by considering a holistic network that can quickly respond to changing market conditions. They 

recommend a process that optimizes the network by minimizing production expenses and 

capitalizing on unutilized system potential. The authors recommend techniques that allow 

linearization of complex functions including materiel processing, product selection, capacities, 

and demand functions. The case study considers a multi-site refinery network using a variety of 

petroleum stock. The authors suggest that this model is efficient and applicable to all levels of 

planning during steady state operations in terms of stock costs and demand (Al-Qahtani and 

Elkamel, 2008).  The simplification of the network to a linear model provides an example of 

how a military analyst might streamline their planning processes when confronted with limited 

time and data at the expense of result precision or accuracy. 
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In a follow on article, Al-Qahtani and Elkamel (2010) describe geographically diverse 

refinery networks entitled, ''Robust planning of multisite refinery networks: Optimization under 

uncertainty.''   The authors propose a stochastic extension of the multisite refinery problem that 

considers variation in market conditions.   A stochastic approach may be necessary to capture 

the random and often unpredictable nature of market effects.  Al-Qahtani and Elkamel propose 

a two stage stochastic MILP that uses robust optimization in order to minimize annualized costs 

associated with the production network. The resulting model highlighted the volatility of the 

petroleum marketplace and recommended a robust optimization planning approach to account 

for the potential variations in market and supply effects. The authors present a familiar 

deterministic model of a network of refineries and apply the effects of these market 

uncertainties using a non-linear component to implement the robust optimization. The test 

model implements this robust optimization model using a three site refinery network to identify 

its sensitivity to changes in market and supply factors (Al-Qahtani and Elkamel, 2010). 

This simulation aspect of their approach employs a Monte Carlo sampling system to 

assign appropriately generated values to probabilistic inputs. The model is tested against a 

single refinery and a network of refineries to determine what insights may be realized. The 

authors demonstrate that there is an improvement in model stability to variations in stock, 

product, and demand factors that affect profit that is scaled by the risk attitude of the investor 

(Al-Qahtani and Elkamel, 2010).  In the event of a disruption, a similar stochastic technique 

allows the modeler to produce random variation in the duration of infrastructure outages or the 

effectiveness of strategic policy implementations such as an embargo. 

An alternate approach involved sequential decision making strategies to maximize the 

returns of a downstream petroleum market.  Mendez et al. (2006) explore a variation of mixed 
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integer linear programs that use a combination of optimization and short term scheduling theory 

in oil refinery operations. This proposed approach seeks to combine solutions of petroleum mix 

optimization with efficient scheduling in order to maximize industry economic success while 

consistently meeting demand (Mendez et al., 2006).   In a period of conflict, similar short term 

strategies may apply to sourcing the priority end users with acceptable petroleum products.  

This type of solution represents a potential decision process that an adversary could utilize in 

planning petroleum distribution during a situation where supply and demand constraints change 

more rapidly.  An approximate dynamic approach would iterate updates to the model with 

changes in end user inventories and infrastructure availability over time progression. 

Mendez et al. (2006) introduce an off-line blending problem that implements a proposed 

MILP. The methodology involves generation of initial product recipes at the refinery in 

consideration of non-linear processes. The approach determines whether the proposed product 

lines are within specification tolerances and informs a scheduling model that specifies the 

destination and volume of transportation shipments to meet the most profitable demand levels. 

The authors utilized three example problems based on various production schedules to 

determine the adequacy of the model in implementing the proposed solutions. The authors 

conclude that the convergence of sequential linear programs to produce a point solution was an 

effective formulation technique to solve this complex and multi-stage problem (Mendez et al., 

2006). 

Ejikeme-Ugwu et al. (2011) describe an approach that focuses on the effects of market 

demand while limiting price variation or supply interruptions. The authors develop a refinery 

planning model where a two stage stochastic linear program develops an initial model and adds 

stochastic elements related to market parameters such as stock cost, supply availability, 
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planning factors, and prices. The authors utilize a method referred to as sample average 

approximation in order to generate an optimal solution in an environment that is sensitive to 

demand uncertainty. The model then implements a recourse process to improve the 

optimization resolution and results (Ejikeme, et al., 2011).  The advantage of this approach is 

its applicability to a network where demand varies widely based on perceived availability, 

collapsing infrastructure, illicit network outflows, and other realities that accompany a 

distribution network in a conflict zone. 

As refinery networks compound with transportation hubs, pipelines, and other 

infrastructure, the size of the problem set becomes increasingly complex.  This complexity can 

result in extensive requirements in solution time and computing power that require resolution.  

A heuristic approach to solving multi-pipeline programming is presented by Herran et al. 

(2012).  The authors attempt to increase the model efficiency of a mixed integer linear 

programming methodology. The proposed method uses techniques for searching areas around a 

known solution using global search meta-heuristics. The authors identify the contribution of 

transportation costs to petroleum product price as a relevant matter because it allows refiners to 

realize the highest savings in operational costs.  Refinery processes have very little variation 

once constituted and are not easily altered or streamlined without significant capital investment.  

Crude stock prices act as a neutral contributor to pump prices because refiners generally 

purchase feed stock from the global market at similar prices.  Since refiners generally pay 

similar prices for crude stock, they are able to pass this cost uniformly to the customer (Herran 

et al,. 2012).  This model explains why end user energy prices tend to adjust uniformly amongst 

competing vendors.   
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Additional solution techniques for problems with increasing complexity are presented 

by Gunnerud et al. (2010).  The authors employ large scale optimization techniques utilizing 

the Dantzig-Wolfe decomposition in order to assess non-constant rate offshore oil production 

near Norway. The model constrains production factors such as transport capacities and raw 

material availability. These dynamic constraints often progress throughout the entire network 

and require a real-time solution that optimizes the network while accounting for these changing 

factors (Gunnerud et al., 2010). 

The authors recommend a real-time approach that decomposes a system of many 

decision variables and dynamic constraints to produce clusters that contain each commodity 

subsystem problem within the process. They apply linearization techniques to each cluster and 

initialize Dantzig-Wolfe decomposition to produce a parallel implementation of the master 

problem that produces a feasible solution in a fraction of the time required for competing 

approximations (Gunnerud, et al., 2010).  

A stochastic model that also utilizes large scale optimization is presented by Oliviera et 

al. (2014).  The authors propose that many aspects of the supply chain including demand, stock 

costs of crude supplies, selling prices, and other highly variable factors are the primary drivers 

of petroleum network flow. These highly unpredictable indicators dominate the decision cycle 

for the production and distribution of refined products and require a two-stage stochastic 

program that applies supply chain optimization in order to achieve a reasonable solution 

(Oliveira et al., 2014). 

The authors propose a model that is formulated as a linear program and coupled with 

Benders’ decomposition algorithm in order to build a master-sub problem involving two stages. 

The required Markov processes that account for the discussed unpredictability is applied to the 
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second stage of the problem. The authors then experiment with various deterministic and 

dynamic cuts in order to reduce the problem to a manageable size. Upon reaching an acceptable 

model, a heuristic approach is applied in order to limit the required iterations. The authors 

conclude that the approach successfully applies stochastic decomposition to a deterministic 

problem with a result that is less than a quarter the processing time of a full-space deterministic 

solution method (Oliveira et al., 2014).  

 Network modeling techniques are sufficiently investigated in the body of research to 

allow specific application to middle distillate fuel production and distribution systems.  

Networks supported by middle distillate inputs can also utilize a similar framework.  The 

complexity of the network will compound with the addition of cascading effects that measures 

changes in product input on dependent systems.  Systems of transportation, agriculture, 

consumer use, and other industries link directly with the outputs of the petroleum network 

model under consideration in this study. 

2.3  Network Interdiction 

Network interdiction is a critical component of the problem focus of this study.   

Multiple researchers have considered the most effective way to interdict a network, and 

petroleum interdiction appears prominently throughout the literature. The most effective 

techniques are well documented, but this review focuses on applications to petroleum networks 

with potential to assess or limit the impacts on local and world economies.  Much of the body 

of knowledge resulted from studies that investigated the protection of critical infrastructure 

networks from attacks or other contingency disruptions.   

Wood (1993) provides an early example entitled, “Deterministic Network Interdiction” 

in an application that supported operations against the drug interdiction network in Latin 
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America.  This approach utilized an interdictor model that minimized the maximum flow of 

illicit trade through disruption of network arcs (Wood 1993).  This approach has since 

expanded into a number of different types of human, commodity, and information networks.   

Israeli and Wood (2002) present an interdiction problem that models the interdictor and 

the network operator in a leader (attacker) and follower (defender) capacity. This process 

requires the operator to possess a capacity to repair or bypass disabled sections of the network. 

The attacker will therefore seek to increase the length of the shortest path to the maximum 

possible distance or time. The authors apply an approach based on Bender’s decomposition in 

order to analyze the network impacts of leaders and followers of varying capacity, and they 

reinforce this process with a series of supporting theorems. The most applicable concept to this 

thesis is where the authors consider a situation of an arc that is destroyed by the interdictor. The 

associated covering algorithm provides a methodology for interdiction modeling of vulnerable 

arcs or edges within a network structure. This feature is relevant to a petroleum distribution 

pipeline if the structure or capacity of the system is vulnerable to disruption (Israeli and Wood, 

2002). 

Lim and Smith (2007) expand the interdiction problem to a multi-commodity flow 

network.   Because refined petroleum mimics a commodity in almost all markets (Inkpen and 

Moffett, 2011: 479),  this approach is applicable to this study.  The authors specifically cite its 

utility in a network supply chain. The interdiction model implements a leader follower problem 

similar to what is proposed by Israeli and Wood (2002). The subsequent applications include 

discrete interdiction using completely destroyed arcs contrasted with a continuous approach that 

allows the interdictor to apply non-linear variation to a network arc (Lim and Smith, 2007). 
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Granata et al. (2013) describe an alternative interdiction model that disrupts 

connectivity by targeting the most vulnerable path called a critical disruption path. The authors 

propose a method to identify the critical disruption path within a network. They formulate their 

problem using a mixed-integer linear program and employ a branch and price algorithm. This 

process begins with a path formulation and simplifies the model by branching from a restricted 

relaxed master problem, which models decision variables continuously (Granata et al., 2013).  

The authors implemented the solution in CPLEX and compared the results of the branch and 

price algorithm to analyze effectiveness.  

Brown et al. (2006) present a study into the defense of infrastructure networks deemed 

critical to functioning public services. Although focused on terroristic threats to the United 

States or its allies, the premise of the article is highly applicable to the notion of cascading 

effects. The authors describe an attacker defender model that measures the importance and 

vulnerability of an asset while applying appropriate levels of interdiction or risk mitigation to 

minimize the overall system impact. A simplified linear model is used to represent crude 

petroleum network flow that serves as a basis for further analysis. This application limits the 

site specific complexity of a refinery optimization model while retaining the definition 

necessary for strategic considerations (Brown et al., 2006). 

Brown et al. (2006) use the strategic petroleum reserve in Louisiana, electric power 

grids, and supply chain management as case studies. In the case of the strategic reserve, the 

authors model the complete system of refineries, ports, and transportation infrastructure and 

apply a limited version of their attacker defender model. The study concluded that petroleum 

networks are highly fragile and vulnerable to attack compared to other infrastructure (Brown et 

al., 2006). 
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Kennedy et al.  (2011) describe the process of nodal interdiction as an alternative to 

research limiting disruption techniques to arcs and edges.  This disruption is defined by 

disabling an infrastructure target to prevent its operation.  The authors recommend an attacker-

defender model that implements a maximum flow objective function, and measures the 

effectiveness of a nodal interdiction against the existing network.  This approach allows the 

modeler to determine the maximum capacity of the network and determine the impacts of 

disruption.  The formulation uses a bi-level maximum flow mixed integer linear program that 

disables the network at the nodal interdiction site.  This concept is extended to a program that 

disrupts nodes and edges simultaneously (Kennedy, et al, 2011).  This framework provides 

useful insight into a network that operates under maximum flow conditions that might be 

present in the event of a petroleum network interdiction.  Storage facilities and polyducts may 

both be vulnerable to disruption, although disabling a storage tank does not necessarily disrupt 

downstream network locations.  However, both possibilities will impact fuel availability to end 

users that include military applications.   

R-interdiction refers the nodes of a network that when interdicted, result in the greatest 

weighted distance between a demand node and a most convenient supply node.  This concept 

informs models that attempt to optimally weaken a network using R number of planned 

interdictions at network facilities.  Because military planners are generally provided a package 

of available sorties or strikes, the R-interdiction model provides a beneficial concept for 

simplifying and maximizing the assignment of these resources.  Church et al. (2004) describe a 

model that iterates the number of strikes, R, and how these strikes might best impede a network 

by maximizing the effects of the strikes measured in terms of resulting shortest distances 

between nodes (Church et al., 2004). This solution is highly applicable to petroleum supply 
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lines since the loss of a storage node can seriously debilitate the flow of commodities to 

dependent end users.  In the case of refined petroleum, the shortest distance will translate to the 

greatest flow rate between nodes using the remaining arc capabilities. 

Computer experimentation is an additional tool that is available to consider an 

interdiction decision space.  Similar to R-interdiction, experimentation allows the development 

of courses of action to impede a petroleum distribution network.  Depending on the options of 

disruption, computer experimentation on a network model would provide the user with detailed 

information on the decision space.  Sacks et al. (1989) codified the use of statistical computer 

models to measure responses to multiple factor settings in a deterministic model.  Similar factor 

settings could accompany interdiction decisions regarding vulnerable pipelines, storage 

facilities, or supply points within the refined petroleum network.  The results of such an 

investigation can inform statistical analysis and response surface representation by investigating 

responses throughout the design space at a limited number of runs (Sacks et al., 1989).   

Johnson et al. (2010) demonstrate how high order polynomials can model input-output 

interactions that may require significant computational power to otherwise execute. The authors 

propose four types of space-filling designs for comparison.  Space filling designs are methods 

used to efficiently represent a large number of factor settings within a design space.  The space-

filling designs that are investigated by the authors include uniform, maximum-entropy, Latin-

hypercube, and sphere-packing designs (Johnson et al., 2010).  Space filling designs are 

intended to investigate as much of the decision space as is possible within constraints of time 

and computing power.  However, an experiment with limited factors or discrete numbers of 

factor settings may allow investigation of the entire design space. 
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Multiple interdiction models are relevant to determining how to best disrupt a 

commodity network.   Petroleum refineries are vast and complex operations whose locations 

and capacities are widely known.  The transportation networks that support product delivery are 

similarly complex.  Despite the dominance of pipeline systems, distribution may rely on any 

number of delivery methods including rail, barge, truck, or freighter.  Available storage 

facilities may be highly diversified in size, location, and vulnerability (Inkpen and Moffett, 

2011: 431).  A first world military superpower such as the United States possesses the 

capabilities to effectively disrupt these networks.  However, complete disruption may not be 

achievable.  Improperly implemented network interdiction could result in undesirable cascading 

effects causing suffering throughout the regional economies with little measureable results in 

reducing the capabilities of an adversary.  The ability to measure the first order effects of 

interdiction is essential to assessing the cascading second and third order impacts on the 

affected economies. 

2.4  First Order Impacts of Disruption 

Empirical analysis provides a tool to predict the price fluctuations of commodities. This 

technique is evident in the analysis of the significant refinery interruptions that occurred after 

Hurricane Katrina. The use of empirical modeling enables the assessment of how market 

shocks and network distributions might impact highly sensitive market conditions such as the 

price of refined petroleum products.  

Kendix and Walls (2010) describe the use of regression analysis of petroleum industry 

indicators. The details of the research include references to the US Department of Energy’s 

Information Administration where available data is compiled for almost every necessary aspect 

of domestic energy markets. This data includes refinery capacity, storage networks, 
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distribution, usage, prices, and a litany of other useful data. The author did indicate that this 

data is not available for individual refineries from the Department of Energy, but suggested a 

methodology to disaggregate these data sets and determine a relationship between individual 

refineries and the fuel markets that they support. The author further identified refinery outages 

identified in the United States and linked these events with the time, date, location, duration, 

and offline capacity in addition to the type of refinery capacity that went off line (Kendix and 

Walls, 2010). 

Kendix and Walls also point out a major concern with the use of empirical time-series 

data that is present in almost any data set that regresses against price. These time series data 

points introduce inherent dependence between data points that is not easily mitigated in the 

regression analysis (Kendix and Walls, 2010). 

Fink et al. (2010) present a risk-based approach that gauges the overall impact on 

market prices caused by a weather disruption.  They consider the forecasting of tropical storms 

over two decades to examine whether the prices are linked to a weather forecasting horizon. 

The authors sourced forecasting data from the National Oceanic and Atmospheric Association 

(Fink et al., 2010). 

The term ‘crack spread’ refers to the difference between the cost of crude petroleum to a 

refiner and the expected price of the products; it is used to define the industry profit margin.  

This calculation usually compares the price of two units of gasoline and one unit of diesel to the 

cost of three units of crude stock (Inkpen and Moffett, 2011: 459:460).  Fink et al. utilize a 

‘crack spread’ calculated from the observed changes in the prices of refined products contrasted 

with the stock prices of the required crude petroleum as a response variable. The data is 

concentrated around the third refinery district of the United States known as Petroleum 
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Administration for Defense (PADD III) that includes all Gulf Coast states and their refineries 

(Fink et al., 2010). 

Changes in forecasts and the associated variations in crack spread statistics allow 

analysts to track how the expected landfall location and magnitude of the storm will influence 

domestic prices and refiner profits. Because such a disproportionate amount of the refinery 

capacity of the United States is located within the path of the Atlantic Hurricane corridor, the 

tools utilized provided some robust analysis due to the high number of data points. The crack 

spread statistic led the authors to conclude that the changes in the 24 hour forecasting of 

tropical storms would significantly influence the trading price of various petroleum 

commodities (Fink et al., 2010).   This conclusion is applicable in any scenario that includes a 

predictable disruption to the refined petroleum network and a reasonable extension to an 

expected armed conflict could result in similar forecasting effects on global prices. 

Choi and Hammoudeh (2009) investigate the problem of time series data in price 

modeling of commodities including crude oil and its refined derivatives.  They seek to identify 

the occurrence of long memory within the petroleum industry using crude spot price data 

collected over two decades. The identification of associated autocorrelation within the data that 

falls between parameters associated with long memory patterns is determined by analysis of 

price returns from the data set (Choi and Hammoudeh, 2009). 

The authors use the presence of long memory to populate an estimate and run multiple 

forecasting models that predict future data within a 20 day output. The model implements the 

effects of price variations and estimates the length of the market effects with significant 

accuracy in crude and most of its products. The results indicate that even a significant break 

associated with conflict or economic disaster will not affect the data substantially to cause 
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variations from the long memory model of petroleum price for the cases examined (Choi and 

Hammoudeh, 2009).   

Jason and Kristin Fink (2013) further explore the effects of forecasting on the prices of 

oil and gas.  The study focuses on the belt of refineries on the US coast of the Gulf of Mexico 

and determines that the price fluctuations have actually reacted earlier over the course of a 

decade from a 24 hour horizon reaction to one of 48 hours. Reasons for this increase include the 

development and refinement of forecasting models that allows a much greater ability to 

estimate impacts on the industry. The authors collected similar data to Choi and Hammoudeh 

(2009) with an expansion into the most recent decade of occurrences. They developed a risk 

assessment methodology and applied an equity return regression model that sources the data 

points presented. Reintroducing the notion of ‘crack spread,’ the authors are able to identify the 

conditions where events related to a hurricane and associated forecasting will result in notable 

changes to the prices of refined petroleum products. Additionally, the authors identify that the 

robustness of the capacities available to larger refiners allows them to use remote infrastructure 

to react to short markets caused by hurricane disruptions and capitalize on the temporary price 

fluctuations. The conclusion reiterates that the model of forecast horizons and attributed price 

fluctuations has moved in a direction that increases prices and profits for traders and refiners 

(Fink and Fink, 2013).  

Blair and Rezek (2008) describes the effects of catastrophic hurricanes in the refinery 

region of the US Gulf Coast on various market indicators. Most notably, Blair and Rezek use an 

error-correction model to determine how quickly the measurable supply effects pass through the 

system to affect prices to the consumer. An empirical model implements error-correction terms 

that uses a long run adjustment parameter to determine how quickly price changes occur and 
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estimates the timeline of the system’s return to steady state. Blair’s model indicates that this 

pass through is extremely quick; there is not significant evidence of market flaws that affect the 

price pass through from crude stocks to spot prices of gasoline during the Katrina hurricane 

event (Blair and Rezek, 2008).  

Kaiser’s (2008) article entitled, ''The impact of extreme weather on offshore production 

in the Gulf of Mexico,'' explores the consequences of tropical storms and hurricanes on the oil 

industry in the Gulf Coast with a focus on shut-in production using an empirical model based 

on historic production coupled with weather events. The author coupled this information with 

production statistics from the Gulf of Mexico. Kaiser’s summary of the capacity of the region 

highlights the complexity of mathematical analysis of the complex distribution and production 

system (Kaiser, 2008).  

Kaiser describes the shut down procedures that are explored in the model and the 

timeframes for shut down, evacuation, and restoration of capacity. The formulated model uses 

seasonal impacts, cumulative impacts, and event impacts to build associated empirical models 

detailing the effects of shut-in production at multiple facilities along the Gulf Coast. The author 

concludes that the impact on shut-in production is present does not delineate the magnitude 

(Kaiser, 2008).  In the case of Katrina, the shut-in procedures occurred with sufficient advanced 

notice to allow the refiners to conduct a safe shut down procedures.  In the event of armed 

conflict, there may not be sufficient time to allow proper system shut down, which will 

exacerbate the impacts and associated cascading effects. 

Kaiser and Pulsipher’s (2006) publication is entitled, ''Modeling the cost of shut-in 

production and the value of information in the Gulf of Mexico.” The work describes weather 

delay risks in the Gulf Cost petroleum markets. He proposes a methodological framework that 
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will provide a cost estimate related to previously discussed shut-in procedures. The author 

provides gradient charts that detail the risk involved with severe weather impact in all locations 

within the Gulf of Mexico, many of which contain production or refinement capacity (Kaiser 

and Pulsipher, 2006). 

Kaiser and Pulsipher (2006) present production recovery and delayed recovery models 

that vary based on the number of events and the number of recovery sequences. These 

parameters are augmented with a cost adjustment for petroleum and gas using a function of the 

discount rate and price over the duration of the shut-down. The empirical model uses a present 

value function that estimates the loss of cash flow during a production shut-in. This model is 

intended for a corporate entity that might attempt to forecast economic losses based on a 

contingency event such as a hurricane. Kaiser and Pulsipher (2006) conclude that the 

information is provided by such a model will support the decision cycle that determines the 

economic risk of shutdown in addition to other factors of safety and necessity when considering 

the proper mitigation strategies for an approaching weather event (Kaiser and Pulsipher, 2006).  

This type of data is an important input for the determination of what procedures would allow 

production to resume the most efficiently.   

The body of research involving refinery disruptions heavily sources empirical evidence 

to determine the expected primary effects on price and global markets.  This information is 

highly valuable in determining market impacts that result from varying degrees of disruption to 

a petroleum network.  Most essentially, the data sources identified by previous research allows 

for estimation of anticipated downtime for a refinery shutdown.  This estimation can use 

empirical data or create stochastic function using known parameters.  While a hurricane is 

slightly more predictable than the effects of intentional state inflicted network interdiction, 
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there are parallels between the effects on a refinery network and the associated economic 

instability.  Since empirical evidence and data is available from most of the world’s petroleum 

markets, this information will inform an appropriate model to predict the immediate impact to 

refined petroleum supply, refinery outages, and product price variations. 

2.5  Cascading Effects of Disruption 

 Once the immediate impacts of a disruption occur, the impacts of price fluctuations and 

shortages will begin to reverberate across the infrastructure system.  Petroleum provides an 

inexpensive and available form of energy in almost every economy in the world.  Within the 

middle distillate products that are the focus of this study, there is vast potential for extensive 

cascading impacts to affect nearly every corner of a society.  The events of September 11, 2001 

resulted in a renewed focus on infrastructure protection.  A significant byproduct of this 

research resulted from the analysis of interdependencies in public infrastructure networks.  

These networks support each other in many essential ways.   

 The existence of these interdependencies was highlighted by Rinaldi, Peerenboom, and 

Kelly (2001) in a study of the subject of critical infrastructure as part of the US National 

Security apparatus.  The authors cite a litany of disruptions including telecommunications 

satellite failure and electricity generation shortages.  As the effects of these failures cascaded to 

other industries, the authors noted the appearance of four types of interdependent systems.  

Physical interdependencies involve systems with direct inputs and outputs to one another where 

the functionality of one network requires inputs from a source network.  Cyber 

interdependencies occur when automation systems control the execution of multiple physical 

networks and result in a vulnerability to informational disruptions.  Geographic 

interdependencies exist in systems that have significant collocation between the arcs of 
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different networks such as with telephone and power lines.  Human decision making schemes 

may result in logical dependencies that link various networks through responses to dynamically 

interacting systems (Rinaldi et al., 2001).   

 The first order effect involving disruption of oil pipelines appears within the 

interdependent model and shows second order effects upon refineries and storage nodes.    The 

disruption manifests itself in excess inventory at refinery locations and associated depletion at 

storage facilities.  These physical impacts will cause supply shortages through road and air 

transportation networks.  These are typical cascading results that the authors classify as linear 

or complex depending on the predictability of the outcome.  Further classification suggests that 

the level of correlation between networks will determine the degree of the impact on associated 

systems (Rinaldi et al., 2001).  Their article presented an important definitional framework that 

informed extensive follow-on exploration of the linkages between industries and their 

associated infrastructure networks. 

 Alcantara and Padilla (2003) considered the potential impact of disruptions to energy 

markets as a result of reducing greenhouse gas emissions in the Spanish regulatory structure.  

The proposed methodology investigates the vulnerability of key economic sectors to regulatory 

reductions in energy consumption using a Leontief model.  The model proposes linking the 

demands of an industry and criticality of the demand to industry production to define the 

elasticity of industry production to increasing energy demands.  The results highlighted 

agriculture, energy production, steel production, transportation equipment, and chemicals as 

key sectors of potential impact (Alcantara and Padilla, 2003). 

 Rinaldi (2004) expanded the discussion of critical infrastructure by recommending a 

modeling and simulation approach to investigating interdependency.  He highlights the national 
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security requirement for determining the various critical network vulnerabilities to terror attack 

and cyber attacks among other goals.  Rinaldi presents modeling approaches involving supply 

chain systems that apply directly to the oil and gas industry.  He also recommends the use of 

dynamic simulation to determine the downstream impacts of network interdiction.  Agent-based 

and physics-based models appear as alternatives to investigate physical infrastructure models.  

The introduction of Leontief models appears in this article and its definition is essential to 

further research in this area.  Leontief Input-Output models estimate economic flows in a linear 

and time dependent system that accounts for the production, transportation, and distribution of 

commodities.  Rinaldi describes the applicability of these models to an interconnected network 

of public infrastructure (Rinaldi, 2004). 

 Zimmerman (2004) presents an investigation of incidents that resulted in observable 

cascading failures as a result of interdependencies that exist in public infrastructure.  The author 

iterated the difference between spatial interdependency that relies on co-location of networks 

and functional interdependencies that result from a system requiring direct inputs from another 

in order to remain functional.  A resulting database demonstrated interconnectivity in a variety 

of industries including oil and gas pipelines and many networks that they support.  Oil pipeline 

disruption did not appear as a common observation, but the interruption of gas pipelines 

resulted in 19 documented cases of failure in an adjoining industry (Zimmerman, 2004). 

 Peterson et al. (2006) survey applications to the examination of key infrastructure 

interactions.  He highlighted the occurrence of interaction for reasons of geospatial proximity, 

direct input reliance, and linkages that result from operational strategies of various 

organizations.  Effects are categorized in terms of PMESII, which the author defines as the 

interconnected political, military, economic, infrastructure, and informational systems of a 
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society.  The author identified three specific systems that are relevant to the study of petroleum 

pipeline infrastructure.  These models include Athena, CIP/DSS (Critical Infrastructure 

Protection Decision Support System), and an Australian government model called CIPMA.  

Petersen’s research revealed a significant level of governmental and industrial participation into 

the study of second and third order effects caused by system interdependencies.  Contributing 

US Agencies summarized in the study included the Argonne, Oak Ridge and Los Alamos 

National Laboratories as well as Air Force Materiel Command (Peterson et al., 2006).   

 Haimes and Jiang (2001) develop an interoperability model based on the work of 

Leontief that explores the level of dependency between interconnected networks.   Santos 

(2006) expanded the concept to interconnectivity in economic systems such as finance, service, 

and commodity flow utilizing a similar Input-Output model.  A terrorist attack is used as a 

premise for the economic disruption.  The resulting model demonstrates oil extraction and 

refinement as two of the top sectors that contain interoperability with other industries.  This 

data is utilized to produce an estimate of overall economic loss to the US economy based on a 

potential disruption.  Again, petroleum refinement appears as a significant contributor to 

economic loss (Santos, 2006). 

 Setola et al. (2009) also applied the Input-Output model to critical infrastructure 

dependency in an analysis of Italian public utility systems.  The approach utilizes an Input 

Output Interoperability Model (IIM) to assess the impact of one industry on the function of 

another.  The approach measures how an industry plays a role in the operations of another 

industry using a dependency index.  These indices are a row summation of a Leontief 

Coefficient that describes the compounding effects caused by significant interdependency.  The 

Leontief Coefficient is calculated by dividing the input of a product in a specific industry by the 
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total outlay of that product output.  The measurement determines the relative level of 

dependence of an industry on a particular type of input or product.  The resulting Leontief 

model follows interactions where cascading effects of one industry could result in the collapse 

of another dependent industry.  The methodology includes analysis of higher order 

dependencies where an industry is impacted indirectly through cascading effects using a 

relative increment that measures the transmission of impacts along a series of dependent 

facilities.  The authors analyze expert opinions to determine the impacts and consequences of 

infrastructure degradation.  The article defines fuzzy numbers as entities that account for 

unknown factors that are collected from subject matter expert data.  They implement fuzzy 

numbers to analyze subjective information from experts (Setola et al., 2009).  

 Lee et al. (2007) discuss a network flow model of interconnectivity that represents an 

interdependent layer network.  This approach appears as a mixed integer program that 

minimizes implementation cost while considering the impact of shifting commodity 

availabilities.   The model extends arc-node structures of interdependent supply and demand 

relationships between infrastructure networks.  Electric power, communication, and 

transportation system interoperability in Lower Manhattan appear in the scenario 

implementation of the model.   The iterative process used to define constraints and variables is 

versatile and could provide the basis for a study of petroleum network disruption and its 

cascading effects (Lee et al., 2007).  

The Lee model adds the critical component of demand shortfalls that are described as a 

slack variable within the solution set.  The weighted slack of demand nodes describes the 

consequence of a network disruption manifesting in unmet demand.  This shortfall will 

determine the degree that a dependent network is affected and highlight the priority for 
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restoration efforts (Lee et al., 2007). The concept of weighted slack contributes an essential 

component to predicting cascading effects.  Within the context of a petroleum supply network, 

this slack may represent the amount of end user demand that is unfulfilled at each distribution 

node.  A decision variable representing unmet demand allows the consideration of the impact of 

unmet demand upon the larger economy or civil infrastructure. This concept will contribute to 

the analysis of interdependency by predicting the level of unmet demand caused by network 

interdiction.   

 Nieuwenhuijs et al. (2008) authored a research paper entitled, “Modeling Dependencies 

in Critical Infrastructures.”  The authors seek an understanding of critical infrastructure 

dependencies and propose a model to represent their relative significance.  The methodology 

measures the impact or effects of dependency by specific quality of the delivered commodity 

including volume of food or petroleum, speed of transportation, temperature of heating water, 

pressure of gas or water, voltage of electricity, and so forth.    The model delineates the 

response of the supported entity by the adjusted functionality level that results from the loss in 

associated dependent supply during a deterioration period and recovery stage.  A time response 

measures the impact of the loss in commodity over a specific time period related to the 

functionality of the supported system.  The model output describes states of operation including 

normal, stressed, crisis, and recovery based upon the services and products available.  The 

authors capture the level of infrastructure movement through various states that are determined 

by the response caused from lack of a required commodity (Nieuwenhuijs et al., 2008).   

Interdependency results from links between networks that result in a physical or 

dependent connection between their functionality.  The degree of this interdependency is 

determined by the degree to which these links interact with the overall network.  Fu et al. 
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(2014) developed an investigation into cascading failure of interdependent systems.  The degree 

that this dependency exists is calculated by the ratio of dependent nodes between two networks.  

Additionally, the redundancy of these networks is calculated by the amount of supply nodes 

that a dependent node in an adjacent network might enjoy (Fu et al., 2014).  In the context of 

the problem statement, a highly redundant transportation network might enjoy several potential 

sources of diesel distribution from the petroleum supply network.  A high degree of dependency 

would also exist in a transportation network since a preponderance of nodes required input from 

a petroleum distribution network.  The impact of this interdependency is evident in the 

aggregate performance resulting from a network disruption, which is calculated using the size 

of the disruption.   

Barker and Santos (2009) describe the essential role of inventory in the mitigation of 

supply chain disruptions.  A robust supply chain with significant inventory can withstand a 

disruption in production or delivery of goods.  Higher levels of inventory, while expensive, can 

increase the resilience of a distribution network that distributes products supporting critical 

infrastructure.   The impacts of various levels of inventory manifests through time and is 

represented in an input-output model (Barker and Santos, 2009).  Similarly, the storage 

capacities of petroleum networks allow a network manager the flexibility to respond to various 

types of supply disruption.  Larger quantities of inventory that are dispersed throughout a 

network will provide a time buffer that acts to mitigate the impacts of interdiction. 

Other applications of the critical infrastructure interdependency models include 

Johansson and Hassel (2010), who provided a case study oriented on a railway.  Zhang and 

Peeta (2011) provided a study that captures techniques for mapping connectivity between 



39 

physical infrastructures and documents the use of various applications in transportation and 

energy system interdependency.   

2.6 Construction of a Generic Petroleum Network Model 

The petroleum network distribution system comprises of three elements required for 

efficient downstream operations.  The refinement and distribution of middle distillates requires 

a refinery network with local storage, regional storage depot locations, and distribution nodes 

available to all varieties of consumers.  Each of these nodes must access reliable transportation 

that can take the form of pipelines, waterborne vessels, truck transportation, and railways.   

(Neiro and Pinto, 2004).  The specific medium utilized to transport finished middle distillate 

products is specific to each local economy.  Pipelines are essential to liquid fuel distribution in 

the continental United States.  However, specific economies may also rely on alternative 

shipment methods as their geography and economic conditions allow.   

Refinery operations must receive raw materials in the form of crude production so long 

as the supply chain remains operational.  Each refinery hub must have sufficient storage 

capacity for each type of crude required to generate their desired output in line with projected 

market demand.  In fact, the role of storage is an essential element to any refinery network and 

distribution model, including the middle distillates necessary for military operations.  Refineries 

require storage capacities available for blending and storage of finished products in addition to 

holding tanks for crude stocks.  Each of these storage nodes has a very specific minimum and 

maximum capacity that requires constant scheduling strategies in order to maintain sufficient 

capacity (Pinto et al., 2000).  Once derived, petroleum products require sufficient shipment 

capacities to reach their initial destination in a timely manner.  The distribution hub that 

receives the shipments must also meet capacity constraints defined by their minimum and 
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maximum storage capabilities.  Schedulers must also balance this process with the availability 

and capacity of a variety of shipping methods.  While pipelines are the primary means in many 

highly developed distribution networks, trucks, rail, and barge delivery systems are also capable 

of distributing refined products.    These alternative methods may allow a network manager to 

bypass disruptions in a pipeline based infrastructure.   

2.6.1 Refinement Capacities 

The design and capabilities of a refinery determine its ability generate finished products 

that meet market demand.  Various blends of processed crude are mixed as intermediate 

distillates within a diesel pool storage unit to form a finished product that meets the 

specifications of the expected user.  The crude stock, operating variables, and demand 

specifications are different for each refinery location.  In the case of diesel and other middle 

distillates, this can occur through five common processes.   

Crude distillation is the initial process for diesel production and results in the production 

of naphtha, kerosene, light and heavy diesels.  Almost all crude stock undergoes atmospheric 

distillation, which involves the heating of desalted petroleum beyond its boiling point at local 

pressure.  This process renders most of the crude into fractions that are collected in the order of 

their volatility for gases or density for particles that remain liquid (Inkpen and Moffett, 2011: 

446).  Although intermediate diesel products require blending or further refinement before 

completion, they could also begin the blending process immediately after atmospheric 

distillation (Moro et al., 1998).  From a standpoint of interdiction, the atmospheric distillation 

process ensures that military grade distillates are inextricably linked from lighter products used 

in many industrial and civilian applications.  The disruption of distillation processes is a 
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This refinement processes is highly non-linear.  In addition, its implementation and 

results often remain known only to the operators and decision makers within the refinery 

complex.  The non-linearity is compounded by the necessity of altering operations and 

production run settings to accommodate changes in crude stock and demand expectations.  

Modeling the interactions of these processes is limited by the availability of data from refiners 

as well as the inability to appropriately adjust an existing model to dynamic circumstances 

(Beyeler et al., 2012).  Because estimations of refinery capacities at global locations are readily 

available, refinery models are represented by approximations based upon the maximum 

obtainable output for critical types of middle distillates.   

For the purposes of contingency modeling, planners might consider estimation of the 

contribution provided to the diesel pool by each internal refinement process.  However, this 

type of estimate requires intimate knowledge of the facility in question, as well as knowledge of 

the decision cycle for military and political processes.  In addition, such estimates require 

expertise regarding methods of disrupting specific product supplies without completely 

destroying refinery capabilities and inflicting undesired cascading impacts.   

2.6.2  Importation 

Economies that cannot refine sufficient petroleum product to meet local demand are 

able to utilize transnational pipelines and seaborne freighters to deliver their requirements.  

These products require a port of entry and are processed through the common distribution 

network for derivatives that are refined domestically (Inkpen and Moffett, 2011:431).  The 

importation of refined petroleum is a significant vulnerability to many economies and presents 

a potential target for embargo or interdiction as described in the Background Section (1.1).   
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2.6.3  Storage Nodes 

The network manager will impose constraints on the network similar to the marketplace 

constraints existing without the uncertainty of disruption.  The storage capacity of demand 

points, distribution nodes, storage hubs, and production centers dominates the binding 

constraints.  Sufficient storage capacity must be available at the intended destination in order to 

complete a shipment.  Storage tanks that are at capacity or incapacitated by a disruption cannot 

accept shipments. This is particularly true of pipelines, where queuing of deliveries is not 

usually possible because they must maintain a minimum flow rate.  Additionally, pipelines can 

only operate at the flow rate that meets the restrictions of the receiving storage terminal.  This 

requires the pipeline to slow its shipment speed whenever the product flow is entering a storage 

terminal to ensure that it does not violate the receiving capacity of that location (Trench, 2001: 

16).   Many other forms of shipment can queue upon arrival at a delivery node.  Most notably, 

trains, trucks, and waterborne vessels can provide temporary holding of their shipments until 

storage capacity is available, although this action reduces the capacity of the shipping arc 

during the queuing process.  These types of alternatives are historically vulnerable to 

interdiction as evident in the Allied Transportation Plan described in Chapter 1.1 Background. 

Fuel storage is an essential industry in any country with a refining capacity.  Petroleum 

and its derivatives are a key component of commodities trading; the ability to receive and store 

shipments of liquid energy is essential to the functioning of the refinery industry on both global 

and regional levels.  Speculators with the capacity to obtain and store refined commodities can 

counter the effects of an oil shock such as a distribution network interdiction.  These 

speculators may include NOCs with refinement and storage capacity.  In steady state 

operations, the managing agency of the storage node will determine how to optimally profit 
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from stored energy as market demand and prices fluctuate normally.  In the event of an 

anticipated network interdiction, these agencies can counter the impacts of shortages by 

injecting stored resources into local markets using storage nodes that are positioned to bypass 

any interdiction (Unalmis et al., 2012).  Demand will ultimately deplete this storage capacity 

until the point of disruption is either bypassed or restored.   

While storage nodes do have the capacity to act as transshipment nodes, this is unlikely 

during steady state operations.  Storage nodes receive shipments from a pipeline for each type 

of product demand.  There is very limited ability to inject products back into the pipeline from 

the supply node because the supply sequencing is set by the initial shipment point.  Ultimately, 

the resulting effect on the network is that a supply node generally ships specific product 

packages to each demand point along a pipeline network.  The shipment will bypass 

intermediate demand nodes and progress directly to the intended demand point as long as the 

shipper has positive control over the network operations (Herran et al., 2010).  In the event of a 

supply disruption, the storage node may be able to utilize the pipeline to ship to other demand 

and storage points along the network, assuming they retain functionality of their pumping 

systems.   

Storage has an essential role due to its ability to mitigate network disruptions and its 

impact on the constraints of the delivery network of refined petroleum.  Liquid products require 

storage volume, which necessitates an extensive infrastructure of holding facilities for any fuel 

network.  These facilities represent a significant asset to an adversary who might utilize this 

capacity to offset the effects of an interdiction or any general market related shock to prices 

(Unalmis et al. 2012).  Storage nodes are equally vulnerable because of their fixed location and 
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necessity in the supply chain.  The consideration of storage capacity is a critical component of 

the problem methodology.   

The modeler may not have access to detailed data regarding local storage capacities.  

However, storage capacity can be estimated as a multiple of the daily demand requirements 

based on the distance from the nearest supply location as shown in equation (2).  Demand 

points that receive and store refined products require a substantial storage capacity and 

pumping infrastructure in order to operate.  Supply network designers consider several factors 

in order to determine the appropriate tank size and configuration at each location.  The tanks 

must contain enough storage space to satisfy demand based withdrawals while accommodating 

each required product separately (Miesner and Leffler 2006, 289-290).  Miesner and Leffler 

(2006) recommend equation (2) in order to determine the appropriate size of a storage facility 

contained within a distribution hub.  This formulation is used to estimate the tank size within 

the model required for the storage capacity in equation (6).  Other methods to estimate storage 

capacity could use sales receipts, satellite imagery coupled with geometrical analysis, or 

available plans and as-built engineering specifications obtained from the network owner, 

subcontractor, or affiliate (Miesner and Leffler 2006, 289-290). 

 

Within this formula, cycle time represents the lapse between deliveries of each product.  

Safety stock provides a buffer that allows planning latitude between arrivals of stock.  Tank 

bottoms represent the physical lower bound of tank capacity described by Pinto et al. (2000).  

Safe fill allowance is similar to safety stock in that it provides a buffer that prevents exceeding 

 Tank size = (Average Demand * Cycle Time) + Safety Stock +  

                        Tank Bottoms + Safe Fill Allowance 

(2) 
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the capacity of the tank during a delivery (Miesner and Leffler 2006, 290-291).  Refined 

product distribution points utilize above ground tanks and represent a high value interdiction 

target.  The loss of this infrastructure prevents distribution points from receiving or distributing 

products delivered by the polyduct. 

2.6.4  Pipeline Arcs 

The pipeline is the most effective method of transporting refined petroleum at a mass 

scale over significant interregional distances.  Trucking lacks the volume and efficiency 

requirements that would allow it to viably replace a major pipeline in most economies.  Rail 

traffic can accommodate significant interregional movement of refined petroleum products, but 

very few locations in the world have significant rail infrastructure to maintain product flow that 

is comparable to a major pipeline (Trench, 2001: 2-3).  Waterborne vessels cannot reliably 

deliver petroleum reasonably close to adversarial military capacities unless the network user 

enjoys and maintains enormous geographical advantages that include unimpeded access to a 

seaport.  The ability to credibly defend such facilities from air or naval attack is also necessary.  

A fuel delivery network might employ every available option in order to ensure that customers 

are receiving sufficient supply.  This is particularly true of an adversarial power that is 

bolstering its network delivery options during or in anticipation of a network interdiction.  

However, there may not be a viable alternative to a major pipeline or waterborne route with 

significant flow rate capacities in even the most robust distribution network.  A possible 

scenario available to the network manager is to employ available waterborne, road and rail 

assets to meet the most critical demand streams such as defense, power generation, and 

essential utilities and services.  The volume available for shipment is dependent on the 
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availability of alternative shipping means under these circumstances.  These alternative means 

are also subject to disruption. 

A polyduct system is an extremely complex shipping procedure that routes multiple 

types of petroleum products through a single arc.  Substantial arc capacity is required in order 

to implement this type of system.  Polyducts are usually routed in a single direction since they 

connect the supply point directly with the demand or storage location (Herran et al., 2010).  

Reversing this process requires a complete stoppage of flow in its primary direction and 

presents a highly complex planning challenge.  Additionally, most polyduct networks connect 

the supply source directly with the demand locations and a reversal is not logistically necessary.  

For research scenario purposes, the modeler might assume that the network manager would 

commit available resources to restoring capacity rather than reversing flow direction.   

In the event of inland pipeline disruptions, the most effective method of regaining 

capacity is to invest resources in a bypass or temporary patch of an interdiction point.  PEMEX, 

the national oil company in Mexico, has demonstrated the capability of temporary pipelines as 

the only viable method of replacing the capacity after a recent natural disaster.  Hurricane 

Ingrid destroyed the vital oil and product pipelines that supported Mexico City supply and 

refinery operations in 2013.  PEMEX implemented a solution of temporary lines that met 

demand after an installation period of only four days.  Reconstruction of this pipeline would 

have required several months while alternative transportation methods proved either 

unaffordable or infeasible due to capacity constraints (“Two Critical Pipelines Down and 

Millions of Dollars on the Line, PEMEX looks to Flexsteel,” 2013).   
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2.7  Aggregate Planning 

In order to improve the versatility of the network, the refiner can disperse products as 

widely as possible based on available storage.  A possible strategy that the network manager 

can employ is to maximize dispersal of their products using existing storage and shipment 

infrastructure.  The manager possesses much of the logistical capacity to execute a strategy that 

ensures a robust network by prioritizing storage nodes based on their criticality and 

vulnerability to network interdiction.  This strategy would occur using the same apparatus 

available to react to natural market fluctuations in supply and demand (Trench, 2001: 7).  

Rather than responding to price fluctuations that drive profit, the manager would respond to 

demand shortfalls based on the most critical needs as determined by a political or military 

apparatus.  Since the most critical nodes are the priority for available supplies during a 

disruption in the distribution network, these storage hubs will be the first to increase their 

supply stockpiles.  This strategy is implemented through Aggregate Planning. 

Aggregate planning processes allow for a network manager to focus on a larger strategic 

objective when determining how to appropriate resources or distribute products across a wide 

range of customers.  Aggregation involves the consolidation of planning considerations 

involving market conditions and capacities.  A properly executed aggregate model allows 

management flexibility to meet customer requirements within the constraints of available 

capacity (Stevenson, 2012: 475).  Developing an aggregate plan involves matching the known 

customer demand requirements with the capacity of a distribution system.  Within the context 

of the refined petroleum distribution model, network managers consolidate all user demand 

throughout the system based on a series of distribution points.  Each distribution point services 

a wide variety of customers for each refined product capacity.   
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Within the aggregate model, the manager considers their capacity to produce and 

distribute a resource to meet a set demand over the duration of an appropriate planning period.  

In an aggregate planning, demand is generally modeled as a known constant.  Alternatively, the 

modeler can introduce a stochastic component that accounts for variations.  The manager’s 

purpose for utilizing aggregate planning models is to ensure that demand is efficiently met 

despite the occurrence of disruptions to supply parameters.  This approach can address multiple 

types of issues, including bottleneck problems within a network (Nahmias, 2001: 117).  

Bottleneck problems such as a disruption in production, distribution network, or inventory 

storage capacity manifest in the event of a network interdiction.  The implementation of 

aggregate planning allows the network manager to mitigate anticipated or unplanned 

disruptions by maximizing the utility of production capacity, supply distribution, and storage 

facilities.   

Aggregate units are determined by the type of material or item that is produced.  The 

most relevant unit to a petroleum supply chain utilizes volume of barrels per day (BBPD), often 

in multiples of hundreds or thousands.  Aggregation must also match the appropriate context 

that adequately informs the model results (Nahmias, 2001: 116).   Because each type of 

petroleum product sources a vast range of dependent industries, the petroleum distribution 

model will maintain differentiation of product type within the supply chain.   

The ability to deliver goods to market is critical in any industry.  Uncertainty over the 

capacities of a supply chain influences managerial decisions for a network.  In the Basic 

Economic Order Quantity model, the producer receives an order of exactly Q units from a 

demand node.  The producer ships this order to arrive exactly when inventories are depleted at 

the inventory location in order to meet expected demand.  There is no lead time required in this 
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model, and orders are designed to meet demand while limiting inventory and storage costs 

(Stevenson, 2012: 566).  This model utilizes Q as a constant for demand that does not vary over 

time.  The significance of the variable Q is to indicate the amount that is shipped to a 

destination during the time horizon of an aggregated planning model.   

The basic transportation problem determines how a product is profitably moved from its 

supply point to a distribution node near the end user.  While the proposed methodology is 

focused on disruption of the maximum flow, elements of the transportation problem still exist.  

These elements include the supply points, transshipment nodes, demand requirements, and 

conservation of flow.  Distribution Resource Planning utilizes the components of a 

transportation problem to inform decisions regarding the production and shipment of resources.  

This process allows consideration of alterations to demand (Nahmias, 2001:315-322).  While 

local demand may remain fixed as described in Aggregate Planning, physical system demand is 

highly susceptible to disruption.  The loss of storage pipeline, or importation capacities will 

alter the production requirements for refineries regardless of local demand variation.  

Distribution resource planning enables the consideration of physical demand fluctuations in the 

system that are proximate to network debilitation rather than demands of the end user.   

 Nam and Logendran (1992) provided a review of studies investigating Aggregate 

Planning Production (APP).  They identified research regarding APP using methodologies that 

include Linear programming, Linear Decision Rule, Goal Programming, Heuristics, and 

Simulations, among others.  The publication allows the reader to determine what pertinent 

research exists to identify the model best suited to a specific type of problem or to inform a 

desired solution methodology (Nam and Logendam, 1992). 
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2.8  Conclusion 

In conclusion, the authors of the cited works provide a robust analysis that is highly 

applicable to the problem statement and description. There is ample research into the proposed 

field to warrant further investigation that meets the requirements of the problem statement 

while providing an opportunity to employ various relevant modeling techniques. The most 

relevant models included mixed integer linear and non-linear programs that sourced either 

empirical models or stochastic modeling in order to develop a solution that met the required 

parameters. Models that represented cascading network effects will supply the depth of research 

necessary to determine where the most significant impacts of refined petroleum disruption will 

occur.  There was significant diversity of the operations research solutions applied to this field. 

Almost every tool in the operations research field is applicable to some portion of the petroleum 

production, refinement and distribution problem. 

Specifically, empirical modeling was the most prominent approach used to explore and 

predict price variations. Linear programming and mixed integer programming applied well to 

refinery mix problems and the network flow problems needed to optimize productivity for the 

refiners and distributors. Stochastic methods were most applicable to apply uncertainties related 

to demand parameters, supply disruption events, and variations in price and stock price 

influencers. Heuristics were present throughout as a method of improving computational 

efficiency. Network interdiction utilized a composite of large scale optimization and adversarial 

programming techniques. Cascading effects models are beginning to implement more specific 

network models that could inform the capabilities of a model in a manner that addresses the 

problem statement.
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and regional economies will enable decision makers to consider the ramifications of such an 

intentional disruption. 

3.2   Development of a Petroleum Commodity Network Flow 

 In the traditional models presented by Pinto et al. (2000) and Neiro and Pinto (2004), 

the refiner is concerned with maximizing profit while meeting contractual market demands 

without violating the balance of storage capacities.  Storage capacities are of primary concern 

due to the hard constraint that limits shipments to the minimum and maximum volumes that the 

containment units of any one location can physically hold.  The model presented by Pinto et al. 

defines the profit function as revenues less the sum of the stock cost of crude oil, transportation 

costs, holding costs, and delivery costs (Pinto et al., 2000) This model is realistic for most 

refinery networks in normal circumstances.   

However, an adversary is likely to alter this model in order to provide the necessary 

resources for military operations and basic government and civilian function during a period of 

anticipated or actual conflict.  Alterations to the profitability model are particularly likely when 

the adversary possesses a state run NOC.  This strategic model uses a prioritized optimization 

that maximizes dispersion to key locations using concepts from aggregate planning by 

providing available resources to critically vulnerable or essential petroleum users.  If 

implemented carefully, an adversary would only execute prioritization to prevent or mitigate a 

physical shortage in order to preserve the integrity of steady state operations for as long as 

reasonably possible.  The profit function is instead relegated to a constraint on financial 

resources imposed by circumstances on the adversary, should any practical constraint exist.   
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3.2.1 Network Formulation Problem Statement 

This formulation will develop the mathematical program required to route multiple 

types of refined petroleum products from a supply point at a refinery or import depot through a 

pipeline network for storage or consumption at demand locations.  Transshipment nodes have 

the ability to store products, distribute to end users, or ship to subsequent demand locations in 

the network.  The objective is to maximize flow of each product type to each demand node with 

weighted preference assigned to locations that are critical to the network manager. 

3.2.2 Definition of Terms 

 The terms used in the formulation are defined in Table 1.  These terms will remain 

consistent throughout this thesis report.  Any application of this methodology or its terms is 

applied across a consistent time period.  The model is developed for a specific time period and 

incrementally solved for each subsequent time period within the model.  The analyst must 

standardize all terms including flow rates, demand requirements, and supply in accordance with 

the selected time period.  This investigation will consistently utilize a daily time period that 

explores a 90 day time horizon.  Therefore, the model considers a 90 day time horizon and 

optimizes in daily time periods.  All terms in Table 1 are continuous unless otherwise noted.   
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Table 1: Index of Network Model Terms 

Sets Definition 
j ϵ D Set of all Demand Nodes j in a Directed Network  
(m,n) ϵ A Set of Directed Pipeline Arcs in Network from node m to node n 
D j ={fϵD:(j,f)ϵA} Set of all nodes f immediately following node j in a directed network 
Hj ={hϵD:(h,j)ϵA}  Set of all nodes h immediately preceding node j in a directed network 
i ϵ S Set of Supply Nodes i 
Sj ={r ϵ S} Set of Refinery Supply Nodes r providing refined products to node j 
Ej ={e ϵ S} Set of Import Supply Nodes e providing refined products to node j 
p ϵ K Set of Petroleum Products p 
Decision 
Variables 

Definition 

Qj,p Ratio of expected product p demand delivered to demand node j 
ym,n,p Flow Rate  for arc (m,n) for product p from node m to n 
ΔStorj,p Inventory change of product p storage at node j to adjust available stocks 
RSi,p Refinery output of product p at supply point i 
ISi,p Imported delivery of product p at supply point i 
SConsj,p Shortfall in End User Consumption of product p at node j  
Constants Definition 

wj,p Weighted value to network manager for product p at node j 
IStorj,p Initial storage inventory of product p at node j updated each time period 
Demj,p Total expected Demand of product p at node j 
StorCapj,p Storage capacity for product p at node j 
LBStorCapj,p Minimum storage capacity for product p at node j 
RCapi,p Refinery capacity of product p at supply node i 
ICapi,p Import capacity of product p at supply node i 
LBFOm,n Minimum Flow Rate for arc (m,n) for all products p 
FOm,n Maximum Flow Rate for arc (m,n) for all products p 
Consj,p End User Consumption at node j of product p 

 

3.2.3  Maximum Flow Mathematical Programming Formulation 

The complete formulation is defined in Table 2 and represents the mathematical model 

that will enable an assessment of a petroleum product supply network in the event of a 

disruption.  The model uses a daily period for this study that accumulates over a 90 day time 

horizon beginning at the time of disruption with the potential for a suitable warm-up period.   
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Table 2: Complete Refined Petroleum Flow Network Mathematical Model 
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3.2.4 Objective Function Development 

This maximization function requires a term that ensures each essential distribution node 

receives a decision variable, Qj,p that indicates the percentage of the expected local demand of 

product p that node j will receive.  In this model, the variable Qj,p  represents a multiplier of 

demand that assigns the delivery volumes to each node j.  When Qj,p is set to 1, the product 
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receipts at the indicated node will equal the expected demand.  Should Qj,p exceed 1, the 

product receipts will exceed expected demand and allow for addition to the storage volume of 

the demand location for product p.  Because maximization of storage is essential to a robust 

network, increasing or maintaining storage levels at critical nodes is a key management tactic in 

the event of an anticipated network interdiction.  The effect of the Qj,p Demj,p formulation is to 

determine the total deliveries to the storage point at each period.  This objective function 

decision variable will effectively maximize the commodity flow rate in a manner that best 

meets the strategic interests of the network manager.  The model determines the most 

appropriate value for Qj,p subject to constraints, weightings, and bounds set by the analyst. 

The model can determine a positive value that is less than 1 to represent Qj,p.  This result 

will reduce the product deliveries below the expected demand level and require withdrawals 

from inventory storage in order to meet local consumption requirements.  The sum-product of 

the Qj,p variable with an appropriate scalar for weight wj,p and the product demand at each node 

j from its nearest supplier provides the maximization function directing the adversary’s 

distribution plan.  This allows non-critical nodes to receive daily demand and available surplus 

as long as feasible.  This function also allows the model to incorporate what an adversary might 

attempt to implement in regards to limited resources and distribution capacity because the 

analyst can bound Qj,p in order to limit the size of deliveries or withdrawals.  However, since 

the future interdiction plan may have vastly different objectives than the distribution network 

manager, the maximized flow uses the Qj,p multiplier as a decision variable.   The key output 

will describe the time requirement for an adversary to increase the robustness of their system to 

deal with specific demand goals.  The adversary can maximize the amount of refined products 

that are diversified across the storage capacity of critical locations.  Once a disruption occurs, 
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the formulation will continue to assign maximum flow to critical nodes where the infrastructure 

to complete commodity shipments is still functional.   

If appropriate to meet the needs of the decision maker, the network manager may allow 

the value of the variable Qj,p to become a negative multiplier.  This negative multiplier will 

force less critical supply nodes to remove Qj,p percentage of supply from storage and inject that 

quantity back into the network.  In the event that no supply points can reach a critical node, 

appropriately assigning a negative Qj,p value to a preceding demand node will allow critical 

nodes to receive shipments from all remaining accessible locations in the network despite a 

successful cut of the network topography.   

The floating ceiling system of storage used in most storage facilities coupled with the 

access location of the fuel spigot renders approximately 20% of the storage contents 

inaccessible without causing significant damage to the storage cell (Pinto et al., 2000).  For this 

study, the value of Qj,p for an undisrupted fuel storage facility is restricted by this lower 

capacity bound.  The requirement could be removed entirely should it be appropriate in a 

prolonged scenario, which allows the model to consider any feasible continuous value for the 

variable, Qj,p. 

The refiner will assess the criticality based on location of demand node j where delivery 

is required.  This criticality will result from its distance from the nearest supply node and its 

value contribution to supported military and civilian assets.  In order to differentiate between 

the criticality of nodes included in the network, the weight multiplier, wj,p is included to 

determine appropriate prioritization amongst critical nodes selected for a variable value of Qj,p 

Demj,p.  The value of wj,p results from an assessment of the criticality of the node and the 

perceived difficulty in maintaining its supplies.  For non-essential nodes, the Qj,p variable is 
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initially modeled near 1 in order to resemble a steady state operation.  The results of this 

maximization function are presented in Equation (3).  An assessment of criticality of demand 

locations is necessary to inform the weighted assessment that will appropriately implement the 

network priorities.  This information may be available from intelligence sources, remote 

observations of the system, or known locations of critical infrastructure and military 

capabilities.   
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3.2.5 Description of Constraints 

These data sets inform the constraint set for operation of the network.  Equation (4) is 

the defining constraint of flow capacity over a time horizon consistent with the model.  For this 

case study, the model will implement a daily iteration of a 90 day decision cycle.  The amount 

shipped by each node through an available arc (m,n) on a specific time period within the 

planning range must not exceed the flow capacity of that arc denoted by FOm,n.  The flow rate 

to each demand node, j is determined by the summation of product types, p moving though 

delivery pipeline arc (m,n) from the previous node iterated over a consistent time interval and 

defined as ym,n,p.  Additionally, since the arc represents a polyduct, all product shipments must 

traverse the same arc within the network infrastructure.  Since polyduct capacity will often 

mirror or exceed the capacity of the supply points, this may not be a determining factor.  

However, if available arc capacity, FOm,n decreases as products progress through the system, 

this constraint should be extended to all locations with arc capacity restrictions.  There is also a 

possibility of a lower bound flow rate, LBFOm,n that dictates a minimum flow rate to ensure 

continued operation of the polyduct arc (m,n) (Pinto et al., 2000). This constraint will 
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contribute significantly to the behavior of the system in the event of an interdiction, and 

requires flow to stop completely if it cannot attain a certain minimum operation. 
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In all cases where demand locations are accessible by the distribution network, the 

shipments may satisfy daily demand if Qj,p is appropriately constrained.  Even in the event of an 

impending interdiction, the availability of supplies is essential to the stability of the network 

and the economy it supports.  Therefore, the network manager may continue to meet demand 

until it is no longer feasible if the goal is to limit secondary economic effects.  In this case, Qj,p 

is constrained at or above 1.  If the network managers desire to reduce the deliveries to a 

particular node, Qj,p may be constrained below 1, which will force the node to meet 

consumption requirements, Consj,p, by removing a volume from storage, IStorj,p until storage 

volumes are depleted.   In this model, the variable for storage adjustments, ΔStorj,p is not 

restricted to positive values and can affect the storage volume negatively or positively.  

Equation (5) enforces this constraint by maintaining or depleting the storage capacity of a node 

as necessary to meet distribution objectives.   

An essential consideration to this analysis is to determine the ability of the system to 

meet local consumption requirements.  Since the shortfall in this local demand will manifest 

itself in cascading failures within dependent systems, the model should record the presence and 

quantity of demand shortfall across all demand nodes.  Price adjustments may impact the 

demand levels in local markets.  However, market driven demand reductions may not diminish 

the existence of shadow demand if local prices impede the volume of the products available for 

purchase.  The lack of available supplies to support the economy and its dependent industries 

will negatively impact sector productivity.  This result will dictate the severity and location for 
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sources of future cascading effects (Lee et al., 2000). The equality constraint in equation (5) 

captures the magnitude of demand shortfall, SConsj,p in consumption requirements at each 

node, j for product, p based on known or expected demand levels for the daily time period 

consistent with the model.  This shortfall is bounded between zero and the consumption 

parameter, Consj,p at node j across a time factor that is consistent with the model. 
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Storage adjustments calculated by the sum of the product quantity change and the initial 

storage quantity at each node, j for product, p must be non-negative or greater than the 

minimum storage volume, depending on the site configuration.  As previously noted, a floating 

ceiling storage cell requires approximately 20% minimum capacity to avoid damage to the 

system (Pinto et al., 2000).  This adjustment to the storage minimum can be included if 

applicable to the network and is summarized in equation (6). The decision variable, ΔStorj,p 

determines the volume adjustment of product inventory by type during shipments in the time 

period.  ΔStorj,p is calculated as the equality between the amounts shipped less the amount 

added to storage and the demand for that product p at the specific distribution node j.  Equation 

(6) defines this equality function and provides an essential component of the model.  This 

storage adjustment is required to update the model at specified periods over a time horizon.  

The change to storage volumes will become the new initial storage constraint, IStorj,p in the 

subsequent time period during the model run.   

 , , , ,j p j p j p j pLBStorCap Stor IStor StorCap       ,j D p K     (6) 

Supply constraints require that the supply shipments from each supply node do not 

exceed the known capacity of that node reduced by the amount of demand received directly at 
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the point of refinement.  Equation (7) maintains that refinery points, RSi, cannot ship to demand 

node j beyond their capacity to produce refined products of each type p.  The refinery locations 

maintain local supply and distribution points that can ship products as individual storage nodes 

within the network.  The representation of these storage nodes does not differ from other 

transshipment nodes in the network defined as a node, j.  This capacity constraint is represented 

as RCapj,p.  A similar constraint shown in equation (8) is necessary for importation nodes, ISi 

which cannot provide input to the system that is greater than available capacity, ICapi,p for any 

product p at supply node i. 

 , ,i p i pRS RCap   ,i S p K     (7) 

 , ,i p i pIS ICap    ,i S p K     (8) 

Balance constraints will dictate the movement of petroleum products through the 

system.  This balance constraint ensures that all flows of products, p through the polyducts are 

stored, consumed, or shipped to subsequent demand nodes, f.  Additionally, the network 

manager can ship storage volumes back into the system to reallocate inventory levels.   This 

flow balance is represented as a free body diagram centered on demand node j and is depicted 

in Figure 4.   
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Since refineries are often dispersed throughout a petroleum distribution network, the 

supply node conservation is only essential where production or importation is a possibility.  

Therefore, an input of zero can represent these parameters if the facility is not present or offline.  

This balance equation ensures that the refinery products rendered locally or imported are 

injected into the network appropriately and shipped to the subsequent nodes in the system. 
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Non-negativity constraints will inform several of the decision variables that are included 

in equations (13)-(14).  Decision variables not indicated in this equation set are not constrained 

in sign. 
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3.2.6 Summary of Mathematical Model 

The Q-Demand model is designed to iterate for an appropriate time horizon as selected 

by the modeler, so long as the time delineation is consistently applied across all variables.  For 

the case study and implementation in this research, the model iterates using a daily time period 

over a 90 day planning horizon starting at the time of disruption.  The modeler may also chose 

to assign an appropriate warm up period in order to replicate the network manager’s capacity to 

build up the inventory level of supplies. Optimizing this model without interdiction of the 

network enables the modeler to represent the warm-up period between the network manager’s 

implementation of aggregate inventory planning in order to diversify their supply status through 
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the anticipated time of interdiction. However, the model is amenable to any consistent 

implementation of time that is sufficiently precise to properly limit the conservation of flow.  

The strategist can extend the model for weekly or monthly time periods as necessary to 

properly assess the capacities of the network.   

 The daily iteration of this model enables the collection of accumulated data that will 

inform potential strategies for interdiction.  The model produces data for supply availability at 

each location and unmet demand at each iteration that are critical to determining the viability of 

a course of action and the associated cascading effects that may accumulate using different 

experimental scenarios.  Because the shortfall in demand, SConsj,p is calculated daily under the 

study conditions, the summation of this value across all demand nodes, j within the model will 

provide a snapshot of the degree that interdiction techniques have negatively impacted the local 

economy.   

Additionally, the daily storage availability, Storj,p provides a tool to measure the supply 

situation at critical nodes as determined by the strategic interests of the campaign planners.  The 

measurement of this statistic summed across the time periods prior to decisive operations 

allows the modeler to estimate the degree to which an interdiction strategy will negatively 

impact an adversary’s ability to maintain petroleum supplies that are accessible to critical 

locations.  For example, this model will use a 90 day time horizon for each experimental 

replication.  However, the onset of decisive actions by friendly forces is determined from a 

detailed concept of operations and will likely occur far sooner than 90 days from the 

interdiction.  The strategist is primarily interested in the availability of military grade fuel to the 

adversary during the lead up to a decisive operation.  For the case study in this thesis, that time 

period is set to 21 days from interdiction.  The manipulation of the parameters within this 
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model will allow experimentation using various interdiction strategies.  The outcome of these 

strategies measured in demand shortfall and fuel availability at critical nodes will inform 

predictive analysis on campaign effectiveness and feed the predictive model of cascading 

impacts.   

3.2.7  Information Requirements 

The planner requires significant data sources regarding supply and demand interactions.  

Many of these are available from open source data.  This is particularly true when the refinery 

and distribution operations are part of a publicly traded portfolio.  Statistics may be available 

from various sources of information. 

Planners require information regarding the location and capacity of refineries and 

import terminals for refined petroleum products that includes daily operational data.  It should 

be noted, however, that the network managers and their supported decision makers may forego 

commercial needs in the event of an emergency or disruption.  Additionally, the model requires 

information on the demand nodes and the network architecture that connects them.   

Based on the network requirements regarding fuels of military application and 

cascading effect, the methodology may include diesel fuel, fuel oil, and kerosene based jet fuel 

from the middle distillate spectrum.  Gasoline is also included as a critical component due to its 

dominance in the refining and distribution network of most petroleum markets, as well as its 

implications on cascading effects (EIA, 2014). 

3.3 Implementation of Multi-Commodity Flow 

 The initial concept necessary to establish a coherent network requires the development 

of the network architecture based on a multi-commodity flow.  Petroleum networks will 

transport multiple product types across an extended network of pipelines and storage facilities.  
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Formulating this network into an organized model requires the establishment of a series of 

matrices that allow the modeler to include the layers of products and apply appropriate 

constraints to the system. 

The formulation used by McBride (1998) accommodates a refined petroleum network 

using aggregate planning methodology.  The establishment of a network based on multiple 

products traversing similar delivery infrastructure is accommodated by matrix (15).  Each NK 

sub-matrix in this equation takes the form of the network incidence matrix representing the 

flow of a specific type of petroleum product.  This incidence matrix for each NK sub-matrix 

includes inputs from servicing supply points, the flow balance along transshipment points, and 

the removal of demand at distribution nodes for each product, p.  The matrix N may be as large 

as necessary to accommodate |K| product types but grows in complexity at each addition.  

Furthermore, as the constraints develop, the products are restricted to the same production and 

distribution infrastructure.  

Implementing McBride’s (1998) formulation for multi-commodity flow, the N matrix 

will populate with each petroleum product type that is of interest to the modeler.  In matrix 

(15), the products represented are various fuel types such as gasoline, kerosene (jet fuel), diesel, 

and fuel oil and denoted as N1 through NK respectively.  These sub-matrices represent the flow 

equations for each product type that are implemented using an incidence matrix. 
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Each NK includes the information on flow balances from |A| supply source inputs and 

between |D| demand nodes.   The dimensions of each sub matrix NK require columns for each 
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supply point, i and polyduct arc (m,n),  that connects demand node m with n.  Each demand 

node, j is represented in |D| rows. The resulting algebraic function across each row represents 

the conservation of flow at each node, j within set D.  The sub-matrix NK  uses inputs 

represented as a zero, one, or negative one value that indicates potential gains/inflow (1) , lack 

of interaction (0), or losses/outflow (-1) for each associated infrastructure point, i, j, or (m,n). 

 The flow balance presented in equation (9) and (10) only depicts a single product type, 

p at the specified demand node, j with inputs from supply node, i.  In order to populate this 

conservation of flow data for the entire model, the complete equation set requires the use of 

matrix (15).  The flow balance for each node j within an individual product type will populate 

the sub-matrix NK.  The modeler must represent each node within the matrix dependent upon its 

pipeline interactions and accessibility to supply nodes, i. This requires that the NK sub-matrix 

has columns representing all supply points, i and pipeline interactions, (m,n).  The NK sub-

matrix requires a row to account for each demand node, j where the model records the 

conservation of flow data. These sub-matrices are then combined by creating a diagonal matrix 

N using sub-matrices NK to represent each product type as defined in matrix (15). This 

formulation will result in an N matrix that requires dimensions of (|S|+|A|)(|K|2|D|).  The 

potential size of this problem depends primarily on the number of product types that are 

considered.   

3.4  Cascading Effects Analysis: Input-Output Models   

Wassily Leontief pioneered the study of the equilibrium of economic interactions 

(Leontief 1951).  This work led to the development of a wide range of applications in both 

energy and military modeling that inform research on the ramifications of changes in the 

production capabilities of an economy.  The Leontief model assumes that economies take the 
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form of a number of interdependent sectors that purchase and sell products or commodities to 

and from one another.  Since petroleum products are often defined as commodities (Inkpen and 

Moffett, 2011: 503), this application is particularly relevant to energy production and 

distribution.  The magnitude to which local industries rely on petroleum fuel products is an 

essential component of a Leontief model that defines interactions within an economy.  Within 

the Leontief model, the refinery process must produce and distribute sufficient output to satisfy 

local, foreign, and own use demand factors.  The model is centered on an input-output matrix, A 

which defines the interaction in terms of monetary value between all industries of interest 

within a specific regional or national economy.   

Leontief’s model requires three critical assumptions that are applied directly to military 

strategy by Snodgrass et al. (2004).  The coefficients of production, which are determined by 

industry requirements, must be a fixed value for the duration of the use of the model.   The 

requirement of constant returns dictates that industry outputs change proportionally to an 

increase or decrease in resources provided.  This is a valid assumption related to petroleum 

consumption, as industries utilizing these products will reduce operations proportionally to a 

lack in supply until a failure point is reached and complete shutdown becomes necessary 

(Haimes and Jiang, 2001: 6).  Additionally, resources are considered homogeneous and 

generally measured in terms of the monetary value paid for them during the interactions 

between sectors (Snodgrass, et al 2004).  The use of monetary values is a convenient method 

for assessing the interactions in consistent units of measure.  An economy that includes 

significant top-driven decision factors within an economy may prioritize certain sectors for 

receipt of available resources such as fuel.  This eventuality can impact the optimization 

objective function detailed in equation (17). 
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3.4.1  Definition of Terms for Leontief Input-Output Model 

 Table 3 describes the terms required to develop an input-output model using the 

Leontief mathematical programming formulation.  The terms referenced in this table are not 

associated with any of the terms from the previous maximum flow network mathematical 

program.   

Table 3: Definition of Leontief Input-Output Model Terms 

ai,j The technology coefficient for the amount of a product from sector i  consumed 
by sector j as a percentage of total inputs required for operation of sector j 

L The matrix composed of all Leontief Coefficient elements of ai,j from a particular 
economy 

xi,j The amount or value of products from sector i  consumed by sector j 
Xi, Xj The total outlays (requirements) and the total outputs (production) of industry i 

or j.  Outlays and outputs must be equal in this formulation. 
X Vector composed of all values of Xj in an economy 
ri,j Coefficient of resources i required for use in sector j 
Pj The total resources i available to an industry j 
Cj Amount of production delivered to end users by industry j 
C Vector consisting of end user consumption across all industries in an economy 
Fi Amount of final demand from industry i 
F Vector consisting of final demand across all industries in an economy  
Ri Amount of exports from industry i 
R Vector consisting of exports across all industries in an economy 

 

3.4.2 Formulation for Leontief Input-Output Model 

 Problem Statement:  This Input-Output Mathematical Model determines how the 

productivity losses in a specific sector reverberate throughout the economy based on 

interdependencies between industries.  The model maximizes the remaining productivity across 

all industries based on limitations placed upon a specific industry or industry component of the 

economy.  This formulation is adapted from Gallagher et al. (2005). 
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Table 4: Mathematical Model for Leontief Input-Ouput Formulation 
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This matrix is then configured as technology coefficients calculated using equation (16).  

Technology coefficients, aij are determined by dividing the amount of sector i outputs 

consumed in sector j, xij by the total output of sector i, Xj.  All xij elements of this equation are 

measured in values of the interactions measured by some monetary standard.  Each entry in the 

input-output matrix, L is converted to a Leontief coefficient using this equation.  The resulting 

technology coefficient aij represents the proportion of total outlays of industry j that are 

consumed by dependent industry i.  Restated, this represents the level of input requirements 

obtained from a specific industry as a percentage of total inputs into that industry, which are 
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defined as their total outlays, or intermediate consumption.  The L matrix is simply an 

organization of each Leontief coefficient, aij (Gallagher et al., 2005). 

 ij
ij

j

x
a

X


    
1, , , 1, ,i n j m   

 
(16) 

Casler and Wilbur related this concept specifically to the energy industry using a model 

that defines energy intensity as an interaction term within the input-output analysis.  This 

concept measures the interaction between energy and non-energy sectors in terms of units of 

thermal intensity per unit of cost.  The authors propose that the technology coefficients 

represent input-output measurements defined by thermal intensities and their costs in dollar 

amounts rather than the Leontief technology coefficients that aggregate every input-output 

matrix entry as a strictly financial interaction (Casler and Wilbur, 1983).  

Haimes and Jiang (2001) define the risk of inoperability as the result of reduced output 

causing systemic failures in a dependent industry due to a measureable disruption in the 

interconnected systems.  The risk model approach uses an L matrix that defines the Leontief 

coefficients using the risk of inoperability of a particular infrastructure system caused by a 

direct disruption in an interconnected industry.  Likewise, resource availability and supply are 

quantified by the risk of inoperability rather than direct inputs as in the traditional formulation.  

This model is adaptable for disruptions that are undefined or stochastic in nature (Haimes and 

Jiang, 2001).   

Although this formulation of Leontief models is highly useful for the implementation of 

interactions between critical networks, its main impact is to measure the risk of a disruption 

within various industries.  In a follow on article, Haimes et al. (2005) further discuss the 

versatility of the inoperability measurements utilized in various Leontief models.  The authors 
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discuss how inoperability may be measured for application to various types of problems.   

Inoperability may extend to shortfalls in production, percentages of demanded production, and 

the residual production of a disrupted system (Haimes et al. 2005).  The article further describes 

how the L matrix in the Leontief model is derived from appropriate construction of make and 

use matrices.  The make matrix describes industrial commodity production, while the use 

matrix describes the consumption of these same commodities within industries as a requirement 

for their productivity.   

The Leontief input-output model requires an appropriate optimization function that 

approximates the expected actions and prioritization of the adversary.  There is significant 

variation in the impact based on how the network manager might redistribute available 

resources.  The manager could elect to maintain production across the economy by 

implementing the maximization of Xi as defined in equation (17).  Alternatively, the manager 

could seek to preserve final demands, Fi using equation (18).  Any combination of these 

components or weighted objective function would allow the modeler to determine the 

cascading impacts utilizing the most appropriate objective function for the expected actions of 

the network manager (Gallagher et al., 2005).  Investigation of these outcomes can extend into 

sensitivity analysis.  This survey will implement equation (17) in order to maintain production 

across all industries in a manner that measures associated cascading effects. 

  1,
max

i n

iiX P
X



  (17) 

  1,
max

i n

iiX P
F



  (18) 

For this study, each experimental run using the model in Table 2 will report a 

cumulative tally of unmet demand across the scenario.  The model will assign a price to this 
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unmet demand based on the market value of the economic losses caused by the disruption.  This 

output will inform the appropriate setting for the constraint Xi 
* that is associated with the 

refined petroleum market as shown in equation (21).  This limitation will reduce the 

contributions to the economy of refined petroleum products below its known operating levels.   

Haimes and Jiang (2001) generated an application of the Leontief model that adapts the 

input-output framework to Interdependent Infrastructure problems that are relevant to the 

United States and other global economies.  This approach implements a methodology for 

determining the risk to critical infrastructure caused by interdependence of industries (Haimes 

and Jiang, 2001).  This model allows for the addition of rij that indicates the resource 

requirement i contribution to the jth infrastructure.  Resources include independent 

requirements such as labor.  The variable Ck and its associated vector C represent the sector k 

production outputs that are delivered to market and consumed by the sum of all end users.  End 

user consumption is not included in intermediate consumption, which is the use of an input in 

the production of another product.  The model accounts for intermediate consumption between 

industries in the L matrix and end user consumption in the C vector.  

The problem methodology presented in Table 2 for modeling the capacities of 

petroleum distribution network will provide a deterministic output that estimates the magnitude 

of a disruption.  Therefore, the complexity of the risk assessment criteria and determination 

used by Haimes and Jiang (2001) is insufficient to inform the Leontief model.  Alternatively, 

Gallagher et al. (2005) present an approach that considers the direct impact of military strategy 

on an industry and its cascading effects throughout an economy using the formulation presented 

by Haimes and Jiang (2001).  This representation characterizes the balance equations by 
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assessing the magnitude of each sector interaction and is described in equation set (19).   The 

parameter Pn is the measurement of primary resource availability (Gallagher et al., 2005). 
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 In order to adapt this to the constrained resource environment associated with the 

implementation of a military strategy, the authors add flow equation (20) that constrains Pj 

resource requirements from exceeding the sum total of its components, final demand, Fi and 

Exports, Ri within the trade structure of the country (Gallagher et al., 2005).  This constraint is 

potentially relevant to a major exporter of refined petroleum, as it takes into account the 

implementation of trade sanctions that limit an adversary’s ability to generate income through 

trade.  This income loss will cascade through the system in a similar method of other industrial 

losses.   

Finally, Gallagher et al. (2005) present additional constraints to allow for the restriction 

of available commodities caused by sector disruptions as a result of military strategy 

implementation.  These constraints prevent production, Xi or resources, Pj from surpassing the 

imposed limitations that are the result of such an implementation, defined as Xi 
* and Pj

* and are 

summarized in equation (21).   
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Since input-output data often resources annual statistics, the analyst must properly scale 

all experimental inputs.  For example, if the measured value of economic loss investigates a 

cumulative 90 day time period similar to this methodology, the model must properly scale the 

value of the response to accommodate an I-O matrix with yearly data.  This requirement may 

violate Leontief’s assumption that input-output interactions remain static in the short term, but 

use of a consistently accumulated data set is essential to achieving a coherent result.  The 

objective function from equation (17) assigns the reduced level of resources amongst dependent 

industries.  This model will determine the new operating levels for each industry as a 

percentage of their known economic contributions, Xi.   

3.5 Interdiction Experimental Design 

The interdicting force may have almost unlimited options within the parameters of their 

capabilities in order to disrupt a supply network.  Operational experimentation provides a 

framework to determine methods of exploring the decision space.  Experimentation involves 

tests of a system in an effort to determine changes to a response.  The experimenter can adjust 

inputs to affect changes on the response that are observed in the system (Montgomery, 2013: 1-

3).  In the network distribution system that is modeled using the methodology outlined in 

Section 3.2, the experimenter is interested in what interdiction courses of action might result in 

desired variations to product availability to adversarial forces.  Additionally, these courses of 

action could result in cascading effects that are more difficult to predict. 

A factor is a variable that the experimenter can change.  Factorial Design includes the 

consideration of multiple factors that are adjusted simultaneously within an experimental space.  
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The analysis of multiple simultaneous factors is often summarized in an Tk design.  A modeler 

selects k number of factors and assesses them at increasing levels, T from low to high for each 

selected factor.  In a system where variation is a factor, replications of the same experiment 

may occur (Montgomery, 2013: 5-7).  The use a full-factorial design is most appropriate to 

consider the largest possible portion of the design space.  In computer experimentation, full 

factorial designs are appropriate if sufficient time and computing power is available to 

implement all possible factor settings.  However, in a deterministic model that does not contain 

stochastic or randomly selected variables, there is no presence of noise or error to consider.  An 

augmentation of the deterministic model from Table 2 will include variations in down time 

imposed by interdiction that will introduce variation into this experiment. 

3.5.1 Factor Selection 

The interdictor has multiple courses of action that could allow disruption of the supply 

network in accordance with the appropriate operational plan.  Appropriate factors required to 

analyze the decision space for petroleum network interdiction include disruptions on polyducts 

represented as arcs, storage hubs represented as transshipment nodes, or refinery and 

importation points represented as supply nodes.   

Polyducts require pumping infrastructure at their origin and at intermittent locations 

along the route.  Pumps, compressors, actuators, and the power plants that fuel them are 

necessary throughout a polyduct network (Miesner and Leffler, 2006: 240-258).  Variations in 

topography could also necessitate booster locations that elevate the network flow.  (Miesner 

and Leffler, 2006: 72-73).  These physical infrastructure points often lie above ground to 

facilitate maintenance, and are therefore vulnerable to an interdiction strike.    
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Storage capacity is often limited within the refined product distribution network.  

Refined fuels have a limited shelf life before they begin to degrade.  Additionally, storage 

capacity is expensive under normal circumstances.  Excess storage would be financially 

disadvantageous to the distributor to transport excess product and store it for long periods of 

time.  Finally, many countries lack the refinery capacity to meet local demand.  In some cases, 

expensive importation processes must already occur to meet local demand (Inkpen and Moffett, 

2011: 476-477).  Therefore, it is rarely to the advantage of the refiner or local economy to 

import fuel that is significantly beyond required demand unless there is a significant discount 

rate that enables financial viability.   

The middle distillate refinement process is also a potential interdiction target.  As 

summarized in Chapter 2, the production of diesel is inextricable from gasoline and other 

refined products (Inkpen and Moffett, 2011: 440-446).  The planner may resource expertise that 

informs a method of isolating diesel production capacity at a specific refinery location.  

However, this will only mitigate the disruption of products beyond the target set of middle 

distillates.  The intensity of the disruption to non-targeted products is estimated by a uniform 

distribution between the maximum (b) and minimum (a) points determined by the modeler 

using input from experts.  Interdiction of a refinery could include but is no limited to kinetic 

attacks, cyber attacks, air interdiction attacks, or financial isolation. Additionally, the modeler 

may update the results of various types of interdictions during ongoing operations in order to 

account for known effectiveness, battle damage assessments, collateral damage, and unforeseen 

tertiary impacts on production.  For the purposes of this study, the impact of the interdiction on 

non-targeted products will use a random input from a uniform distribution between 0 and .25.  
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This means that a randomly assigned value will set the remaining production of gasoline at a 

disrupted refinery between zero and 25 percent of the previous capacity. 

Finally, planners could attempt to implement an embargo against petroleum imports as 

discussed in Chapter 1.  The success of an embargo depends upon the cooperation of multiple 

partner countries and third parties as evidenced by incidents in Iran and Iraq during the 20th 

century (Yergin, 1992: 464, 773). A uniform distribution between a maximum (b) and 

minimum (a) threshold of embargo success can provide the model with an estimate for the 

effectiveness of such an embargo.  As evidenced from the embargo policy employed by the 

United States in Libya in 1986 and presented in Section 1.2, even a very successful embargo is 

not likely to prevent a petroleum rich adversary from exporting petroleum or its derivatives to 

resource hungry clients.  Therefore, the modeler must make a determination of the range of 

effectiveness of a proposed embargo based on the most current political, diplomatic, and 

military circumstances of all involved players.  For the purposes of this study, the impact of the 

interdiction on targeted products will use a random input from a uniform distribution between 

.1 and .25.  This means that a randomly assigned value will set the remaining importation of 

middle distillates at a disrupted refinery between 10 and 25 percent of the previous capacity. 

The model represented in Table 2 contains parameters that are easily manipulated by the 

analyst to replicate these factors during experimentation.  This holds true for all factor types.  

The analyst can reduce the availability of a polyduct by lowering the capacity of its flow rate, 

FOm,n.  This flow rate can fall as low as zero so long as the accompanying minimum flow rate 

receives comparable adjustments.  Storage facilities have a similar capacity constraint, 

StorCapj,p and its lower bound, LBStorCapj,p that are amenable to adjustment according to the 

appropriate level of interdiction.  Importation and refinement supply points both contain 
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capacity constraints, RCapi,p  and ICapi,p that the analyst can lower according to the level of 

reduction that is appropriate for the strategy under consideration.  Additionally, the definition of 

the model is sufficient to allow point specific manipulations for location, degree, and product 

type.  The adjustment of these factors using constraints already included in the model in Table 2 

will produce changes in response levels necessary to evaluate the military effectiveness and 

cascading impacts of the strategy. 

3.5.2 Response Selection 

The impact of adjusting the factors within the model is measured by recording an 

appropriate response from the results of the model in Table 2 (Montgomery, 2013: 2).  There 

are two appropriate responses to answer the study questions and inform the analysis of 

cascading effects.  The first response is the availability of middle distillate grade fuels at the 

critical locations at the time when the depletion of an adversary’s fuel stocks is most desirable.  

In order to set conditions for a D-Day that denotes the beginning of decisive operations (21 

days in this study), interdiction operations occur at an appropriate offset to best degrade the 

capabilities of a targeted adversary and seize the initiative.  This disruption will deplete the 

ability of an adversary to conduct operations and enable the execution of decisive operations by 

the supported force (DA, ADP 3-0, 2011: 5).  The timing of the decisive operation varies based 

on the supported concept of operations and is easily manipulated by summing the data points 

across the critical time period during the model run. The analyst can shorten the time iterations 

of the model in Table 2 to enable more flexibility in the selection of a critical time period. 

The second response of interest is the value of commodities removed from the economy 

based on the shortfall in demand, SConsj,p.  This shortfall, measured for all product types p, is 

priced based on known data points for the economy under consideration.  Cumulative data 
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regarding unmet demand should be collected throughout the entire period of analysis.  The 

duration of the analyzed time period, if measured in terms of time phased force and deployment 

data (TPFDD), is typically 90 days.  This time horizon will vary accordingly based on mission, 

unit preparedness, and means of transit for the deploying force (DAF, AFI 10-401, 2006: 176-

178).  The economic impact is measured in product value removed from the economy and 

informs the methodology for cascading effects. 

3.5.3 Duration of Disruption 

The length of the effectiveness of the interdiction lies beyond the control of the 

operational planner.  Once an interdiction occurs on a critical resource such as petroleum 

production, the network manager will execute options to restore capacity.  There are frequent 

disruptions in the course of normal operations within a petroleum distribution network 

consisting of refineries, pipelines, and storage hubs.  These disruptions include leaks and 

equipment malfunctions (Miesner and Leffler, 2006: 160, 171).  The networks include a 

capacity to repair and restore these capacities upon a disruption, and this ability extends to 

intentional interruptions and acts of nature.  There are also alternative resources available to the 

network manager in order to augment the capacity of a network to circumvent disruption points.  

If there is sufficient rail, road, or barge capacity available, these resources can augment the 

capacity of an affected pipeline.  However, the time, cost, and geographical constraints of these 

methods limit their effectiveness (Trench, 2001: 2-3).   

A reasonable implementation of a restoration process is represented by the project 

evaluation and review technique, or PERT model applied in project management.  This model 

utilizes a Beta Distribution in order to provide an estimate of time to completion for a project.  

Petroleum network restoration is adaptable to this model.  The modeler requires an estimate for 
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the minimum, maximum, and most likely time to complete the restoration of the interdicted 

resource, defined as a, c, and b respectively.  The Beta distribution requires these three inputs to 

estimate each of its two parameters, α1 and α2.  These distributions are estimated by formulas 

(22)-(26)  (Epix Analysis, 2014).  While this model implements the Beta Distribution to 

analyze recovery time, a more appropriate distribution for a case specific target set is easily 

applicable to this methodology.  Additionally, various distributions are easily interchangeable 

within most automated models and simulations. 

 ( 4 ) / 6a b c    (22) 

 
1 (( )(2 )) / (( )( ))a b a c b c a         (23) 

 
2 1( ( )) / ( )c a       (24) 

 
1 2( ( , ))(( ) )Downtime random c a a      (25) 

 Recovery = Random(exponential(Downtime)) (26) 

   Each interdiction remains effective for a random time determined by the boundaries of 

the PERT model Beta Distribution.  Once the period of inoperability is over, the network 

component resumes operation.  The downtime of the component is determined by a random 

number from the Beta distribution that is multiplied by an adjustment factor, which is 

summarized in equation (25).   The model must record the demand shortages that accrue during 

this time period in order to identify the effectiveness and cascading effects of the interdiction.  

Additionally, the calculated downtime for each interdiction is implemented to generate a 

random number from an exponential function using the random variable for downtime as the 

expected value.  The results of the random number from the exponential function determines 
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the recovery and repair period for partial infrastructure restoration to occur.  Restoration of 

disruption points occurs discretely and an estimate of the percentage restored for various types 

of interdictions is left to the modeler through the use of expert and operational analysis. 

Associated levels of interdiction involves relative adjustments to the number of nodes 

interdicted, the degree of disruption as a percentage of capacity, and the expected duration of 

the disruption.  Increasing levels of each interdiction action will span the decision space and 

inform the process regarding the factorial design.  By selecting a number of critical nodes 

where the interdictor desires to impede product delivery, the modeler can develop reasonable 

options of interdiction based on the responses of demand shortfalls and supply availability at 

critical nodes.  Pipeline, storage, refinery, and import locations are all vulnerable to disruption.  

The interdictor could potentially target any or all of these vulnerabilities using a variety of 

means.  Finally, if there are re-strike capabilities available, the modeler could adjust the 

minimum time period of interdiction, a, to a value fixed at the latest available date for re-strike.  

This is particularly pertinent to disruption of arcs and nodes and may be coordinated with the 

proposed initiation of friendly decisive operations.  Once the response data is collected and 

analyzed, the modeler can assess the significance of factor adjustments and the practical 

implications for the strategy. 

3.5.4 Hypothesis Testing 

The use of experimental design requires the development and testing of hypotheses that the 

funs of the model investigate.  These hypotheses enable the modeler to investigate various 

parameters, factors, and settings within the model and assess response measurements that 

appropriately investigate the related study question.  For this study, the software package 

JMP11 will implement a t-statistic test on the statistical significance of each factor to determine 
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what terms are statistically significantly contributors to changes within the response data for 

each experiment.   

Additionally, there is potential for effects of factor interactions and quadratic relationships 

to have an effect on the response.  Factor interactions occur when consistent settings from one 

independent factor affect the response at a rate that is significantly different at various settings 

of another factor (Montgomery, 2013: 4).  It is also possible for quadratic effects to occur 

within the experiment that require the use of a second-order model.  Second-order models 

include a squared regression term that best defines a model with significant curvature.   

JMP11 uses a screening feature that conducts a t-statistic test in order to recommend factor 

terms, interaction terms, and second-order (quadratic) terms for inclusion in the analysis of 

variance and resulting empirical model.  A summary of the t-statistic calculation for using a 

multiple regression hypothesis test is shown in equation (27).  This equation requires the 

sample value of the least squares estimator, j , an estimate of the variance, 
2

 , and the 

diagonal element of the input matrix, Cjj.    (Montgomery, 2013: 465).  A number of available 

statistical software packages including JMP can easily calculate these parameters.  If the value 

of to is greater than the index value as shown in equation (28), the parameter is deemed 

statistically significant to accept or reject a hypothesis regarding its impact on the response.  

The inputs required for equation (28) include significance level, α (always .05 in this study), 

number of factors, k, and number of replicates, n.   

  
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The hypothesis tests allow the experimenter to determine which factors, interactions, and 

quadratic terms have significant influence on the model.  This will enable an analysis of 

variance that determines results based on the influence of factors on the response data that is 

collected during experimentation.  Once experimentation and data collection is complete, the 

use of a regression analysis and a half normal plot within statistical software will highlight 

factors, interactions, and quadratic terms that significantly influence the model (Montgomery, 

2013: 262-263).  A response surface or profile associated with the model will highlight the 

response behavior at various factor settings.  The hypotheses investigated in the case study in 

Section IV are as follows: 

Hypothesis 1 

 When the factors are limited to supply interdictions in the scenario, measureable 

cascading effects may occur, but there will be no statistically significant impact on the 

availability of military grade fuels at all supply locations.  The experiment will interdict 

all supply factors of importation and refinery points in order to test this hypothesis using 

equations (27)-(28) and measuring the impact of two supply factors, their interactions, 

and all second-order terms for significance.   

o H1.1: Supply Interdictions (refinery (Z1) and importation (Z2)) will not 

significantly impact the availability of military grade fuels at the critical supply 

locations. 

  H1.1: Z1, Z2, Z1*Z2, Z1
2, and Z2

2 = 0 

o H1.1A: Supply (refinery and importation) significantly impacts the availability of 

military grade fuels at the critical supply locations. 
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 H1.1A: Z1, Z2, Z1*Z2, Z1
2, and Z2

2 ≠ 0 

o H1.2: Supply Interdictions (refinery and importation) will not significantly impact 

the measureable value of economic losses based on unmet demand. 

 H1.2: Z1, Z2, Z1*Z2, Z1
2, and Z2

2 = 0 

o H1.2A: Supply interdictions (refinery and importation) significantly impact the 

measureable value of economic losses based on unmet demand. 

 H1.2A: Z1, Z2, Z1*Z2, Z1
2, and Z2

2 ≠ 0 

Hypothesis 2 

 Network interdiction (critical storage and delivery systems) will provide a statistically 

significant impact on the availability of middle distillates at critical nodes with less 

cascading impact than disruptions in the pipeline arcs.  This hypothesis is best tested by 

attempting to reject the opposite statements that network interdiction will not have a 

significant impact on either availability or economic losses. The experiment will 

interdict the network factors of storage (Z3) and pipeline (Z4) critical infrastructure 

locations in order to test this hypothesis using equations (27)-(28) and measuring the 

impact of two network factors, their interactions, and all second-order terms for 

significance. 

o H2.1: Network interdiction (critical storage and delivery systems) will not 

significantly impact the availability of military grade fuels at the critical supply 

locations. 

 H2.1: Z3, Z4, Z3*Z4, Z32, and Z42 = 0 

o H2.1A: Network interdiction (critical storage and delivery systems) significantly 

impacts the availability of military grade fuels at the critical supply locations. 



89 

 H2.1A: Z3, Z4, Z3*Z4, Z32, and Z42 ≠ 0 

o H2.2: Network interdiction (critical storage and delivery systems) will not 

significantly impact the measureable value of economic losses based on unmet 

demand. 

 H2.2: Z3, Z4, Z3*Z4, Z32, and Z42 = 0 

o H2.2A: Network interdiction (critical storage and delivery systems) significantly 

impact the measureable value of economic losses based on unmet demand. 

 H2.2A: Z3, Z4, Z3*Z4, Z32, and Z42 ≠ 0 

Hypothesis 3 

 The disruption of refinery supply, delivery, and storage factors within the context of the 

scenario will have a significant impact on the military availability with the most limited 

cascading impacts.  This experiment will inform the recommended strategy.  This 

hypothesis is tested by attempting to reject the opposite statements that supply and 

network interdiction will not have a significant impact on either availability or 

economic losses. The experiment will interdict factors with significance in previous 

experiments in order to test this hypothesis using equations (27)-(28).  Evaluation will 

include factors, interactions, and higher-order effects on the responses.   

o H3.1: Refinery Supply and network (storage and delivery systems) interdiction in 

the scenario will not significantly impact the availability of military grade fuels 

at the critical supply locations. 

 H3.1: Z1, Z3, Z4, Z1*Z3, Z1* Z4, Z3*Z4, Z1*Z3*Z4, Z1
2 ,Z3

2, Z4
2 ,Z1

3 ,Z3
3, 

Z4
3 = 0 
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o H3.1A: Refinery Supply and network (storage and delivery systems) interdiction 

in the scenario significantly impacts the availability of military grade fuels at the 

critical supply locations. 

 H3.1A: Z1, Z3, Z4, Z1*Z3, Z1* Z4, Z3*Z4, Z1*Z3*Z4, Z1
2 ,Z3

2, Z4
2 ,Z1

3 ,Z3
3, 

Z4
3 ≠ 0 

o H3.2: Refinery Supply and network (storage and delivery systems) interdiction in 

the scenario will not significantly impact the value of economic losses based on 

unmet demand. 

 H3.2: Z1, Z3, Z4, Z1*Z3, Z1* Z4, Z3*Z4, Z1*Z3*Z4, Z1
2 ,Z3

2, Z4
2 ,Z1

3 ,Z3
3, 

Z4
3 = 0 

o H3.2A: Refinery Supply and network (storage and delivery systems) interdiction 

in the scenario significantly impacts the measureable value of economic losses 

based on unmet demand. 

 H3.2A: Z1, Z3, Z4, Z1*Z3, Z1* Z4, Z3*Z4, Z1*Z3*Z4, Z1
2 ,Z3

2, Z4
2 ,Z1

3 ,Z3
3, 

Z4
3 ≠ 0 

Hypothesis 4 

 The impacts of a natural disaster disruption within the scenario will not significantly 

affect supply availability at critical locations or result in widespread cascading effects.  

This experiment will test a smaller disruption caused by a natural disaster in a localized 

area using a smaller set of the four potential disruption factors.  The experiment tests for 

the impacts of electricity and utility outages impacting pumping infrastructure at storage 

nodes and pipelines.  Additionally, the experiment includes managed disruption of an 
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importation and refinery point affected by a risk based shutdown.  The experiment will 

interdict this reduced factor set in order to test this hypothesis using equations (27)-(28). 

o H4.1: The Natural Disaster scenario disruptions will not significantly impact the 

availability of fuels at the critical supply locations. 

 H4.1: Z1- Z4, C(Z1- Z4* Z1- Z4), C(Z1- Z4* Z1- Z4* Z1- Z4),Z1
2- Z4

2, Z1
3- 

Z4
3 = 0 

 C() indicates all possible combinations of Z1, Z3, and Z4 interactions 

o H4.1A: The Natural Disaster scenario disruptions significantly impact the 

availability of fuels at the critical supply locations. 

 H4.1A: Z1- Z4, C(Z1- Z4* Z1- Z4), C(Z1- Z4* Z1- Z4* Z1- Z4),Z1
2- Z4

2, Z1
3- 

Z4
3 ≠ 0 

o H4.2: The Natural Disaster scenario disruptions will not significantly impact the 

value of economic losses based on unmet demand. 

 H4.2: Z1- Z4, C(Z1- Z4* Z1- Z4), C(Z1- Z4* Z1- Z4* Z1- Z4),Z1
2- Z4

2, Z1
3- 

Z4
3 = 0 

o H4.2A: The Natural Disaster scenario disruptions significantly impact the value of 

economic losses based on unmet demand. 

 H4.2A: Z1- Z4, C(Z1- Z4* Z1- Z4), C(Z1- Z4* Z1- Z4* Z1- Z4),Z1
2- Z4

2, Z1
3- 

Z4
3 ≠ 0 

The results of the hypothesis tests provide validation of the significance of each factor, 

potential interactions, and higher order effects on the measured responses in the scenario.  

Significant factors, interactions, and higher-order effects will inform analysis of variance in 

order to produce an empirical model and response surface that is representative of the system.  
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This validation also provides a statistically significant value of the degree economic loss in the 

downstream petroleum products industry by assessing a cost to the level of unmet demand.  The 

value of this economic loss will feed an assessment of cascading effects that determines the 

level of impact on dependent industries.  When applied to a test scenario, similar analysis can 

explore a number of operational strategies under investigation. 

3.6 Conclusion 

The methodology presented in sections 3.1-3.4 details the process for modeling the 

operations of a refined petroleum network using a deterministic mathematical programming 

technique, determining impacts of disruption through experimentation, and estimating the 

cascading effects using a Leontief model.  The complete flow chart representing this solution 

methodology appears in Figure 6.  The overview shows how a known network architecture and 

data set populate a network implementation model.  This model conducts a appropriate warm-

up period to assess the impacts of network management priorities.  Experimental factors and 

restoration inputs then populate the experimentation phase.  The model records responses of 

military availability and economic loss on a defined timeline for the analyzed scenario.  All 

time period solutions update the data set inputs for the subsequent time period.  The results 

inform a Leontief input-output model with a  snapshot of effects for the defined time period and 

allow an evaluation of strategic and economic impacts.  The combination of these assessments 

informs the development of courses of action that best meet the needs of the strategist and 

decision maker. 
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create the network effectively and collect necessary data as required.  Additionally, the 

algorithm will implement the scenario Leontief model using the results of the network analysis.  

The modeler may apply interdiction or disruption parameters to any desired location, and 

observe the results in terms of the two defined responses, availability of military grade fuel and 

economic loss to the economy of interest.  The results of a relevant case study using this 

methodology appear in Chapter 4.   

Table 5: PseudoCode Algorithm for QDemand-Leontief Automated Model 

Step Description 
1 Define NK Matrix Formulation for Multi-Commodity Network 
2 Set Number of products, p and supply points, i numSP 
3 Build Storage Capacities, StorCap, and set initial storage, IStor 
4 Build N multi-commodity network, AFO based on p and NK 
5 Build Demand Matrix, DemQ for each transshipment node 
6 Combine AFO and DemQ into a flow equation set, FOEq and constraints, FOEqC 
7 Initialize change in storage, DeltaStor, and demand shortage, SlackDem 
8 Build Storage Adjustment Equation, StorAdjEq to measure changes to inventory 
9 Constrain demand, DemC, and storage, StorC 

10 Constrain the flow through each arc to known capacities, SumArcFO 
11 Conduct Warm Up Period  

     for d=1:D 
12 Update Storage Capacity, IStor 
13 Constrain Storage Capacity ,StorMax/StorMin based on IStor value 
14 Update Arc Flow Constraints, UB/LBArcC 
15 Update Supply Constraints, SupC 
16 Format Problem for CPLEX  

          Aeq/beq for equality coefficient and constraint matrices 
          Aineq/bineq for inequality coefficient and constraint matrices 

17 Set and constrain objective function, f using upper and lower bounds ub/lb 
18 Execute CPLEX 
19 Collect storage adjustment data, StorAdj for each commodity type by location 
20 Recalculate initial storage levels, IStor at each iteration 
21        END for loop 
22 Initiate Experimental runs 

       For e=1:E 
23 Repeat steps 1-10 
24 Create Beta and Exponential Distributions for Storage interdiction using a unique 

distribution for each disrupted node 
25 Assign downtimes and recovery times for each disrupted node 
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26 Create Beta and Exponential Distributions for pipeline interdiction using a unique 
distribution for each disrupted node 

27 Assign downtimes and recovery times for each disrupted arc 
26 Create Beta and Exponential Distributions for refinery interdiction using a unique 

distribution for each disrupted refinery.  Assign uniform distribution to non-military 
grade products as required. 

27 Assign downtimes and recovery times for each disrupted refinery 
29 Initialize Network Interdiction Model 

          For d = 1:D 
30 Update Storage Capacity, IStor 
31 Apply storage interdictions to storage capacity using designed experiment, EXPMT 

         If EXPMT(entry)>assigned node 
                     Limit Storage Capacity based on time, d>downtime 
         End If 

32 Update Storage Capacity using experiment parameters from step 31 
33 Apply pipeline interdictions to arc capacity using designed experiment, EXPMT 

         If EXPMT(entry)>assigned arc 
                     Limit Arc Flow Capacity based on time, d>downtime 
         End If 

34 Update Arc Capacity using experiment parameters from step 33 
35 Apply refinery interdictions to supply capacity using designed experiment, EXPMT 

         If EXPMT(entry)>assigned refinery 
                     Limit Refinery Capacity based on time, d>downtime 
         End If 

36 Update Refinery Capacity using experiment parameters from step 35 
37 Apply import restrictions to supply capacity using designed experiment, EXPMT 

         If EXPMT(entry)>assigned import point 
                     Limit Refinery Capacity based on time, Import Distribution 
         End If 

38 Update Import Capacity using experiment parameters from step 37 
39 Repeat steps 16-20 
40 Calculate Demand Shortfall by product type and calculate value of loss using price 
41 Calculate daily supply of middle distillates at critical nodes, MGCrit 

          If d<D(decisive operations), calculate MGCrit 
42         End For 
43 Initialize Leontief Model using IO Matrix, resources, and constraints 
44 Set up PCDG matrix to mirror size of EXPMT x IO 
45 Determine size of IO matrix, aij

46 Scale Value Loss VALLOST to time period of IO matrix 
47 Set Aineq and bineq using IO and resource matrix inputs 
48 Define and bound objective function, f 
49 Execute CPLEX 
50 Record output as a percentage of sector productivity 
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IV. Results and Analysis 

4.1  Data Selection   

 The implementation of this model requires a realistic data set that represents the known 

production and distribution network of a country with robust petroleum refining capacity.  The 

specific country is not critical to allow demonstration of the model.   A country with a national 

oil company apparatus that refines, imports, and exports multiple petroleum product lines is an 

ideal choice.  There is a variety of countries that meet the criteria, and over 80 countries 

worldwide possess some refinery capacity (EIA, 2007).  The specific country selected for this 

demonstration is only a test case used for illustrative purposes, and does not indicate any 

possibility of conflict or other potential cause of disruption. 

 The purpose of this model demonstration is to show how the model produces useful 

results using appropriately assigned parameters and factors within the network and associated 

experiment.  The method of interdiction is not a focus and the model is intended to support any 

type of attack where network restoration will occur.  While this experiment focuses on 

restoration distributions specified in the methodology, the user may select any appropriate 

distribution package.  Additionally, this demonstrative scenario focuses on minimizing cascading 

and collateral effects on the impacted economy while still achieving acceptable levels of 

strategic success against military fuel supplies.  Users of this model might choose to exacerbate 

cascading effects, and similar experimentation methods could also inform appropriate 

interdiction strategies for that goal.  The modeler and strategist are left to determine which 

factors, critical geography, time horizons, interdiction levels, and distributions are most 

appropriate based on their adversary and concept of operations.  Because this demonstration is 
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notional, any adjustment to its implementation parameters or data sets in subsequent studies is 

wholly appropriate. 

 Many unclassified sources exist that provide substantial data on refinery networks and 

their capacities.  The Organization for Petroleum Exporting Countries (OPEC) maintains a 

database of supply, demand, and infrastructure data including refined petroleum and other related 

industries for all of its member countries.  OPEC publishes this information annually in its 

statistical yearbook (“OPEC Annual Statistical Bulletin, 2013).  The Department of Energy of 

the United States and many other countries provide detailed data of the national and global 

energy markets with specific analysis related to refined petroleum (EIA, 2014).  Some national 

oil companies are publicly traded and release detailed information regarding their production of 

refined products and the associated distribution network.  The national oil company of Mexico, 

PEMEX, is one such organization.  PEMEX publishes a statistical yearbook annually (“PEMEX 

Statistical Yearbook, 2003-2013,” 2014).    

Additionally, there is a detailed supply data available from the Mexican Secretary of 

Energy (SENER) that includes delivery data of refined petroleum products to every distribution 

hub within the country of Mexico and other key information regarding the distribution network 

(SENER, 2014).  For these reasons, Mexico is an appropriate choice for an illustrative test case 

that will validate the model and provide insight into the impacts of an interdiction. 

 Based on data from PEMEX and the Mexican Secretary of Energy, the model requires 

information essential to the development of a realistic case study of a refined petroleum 

production and distribution network.  The essential data components collected from SENER 

include refinery locations and output levels, storage locations with consumption quantities and 

import capabilities.  PEMEX provided a schematic of the distribution network with pipeline 
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routes and data regarding end user prices and refinery specific data.  SENER provided a much 

higher level of disaggregation for production levels, and this data proved useful to populate the 

refinery network and distribution facilities.   

 The production network includes 6 refinery locations with the maximum capacity 

determined using the monthly production levels observed over the most recent 12 month period.  

Additionally, four known import locations are assigned a maximum capacity based on 40% of 

product consumption that is imported (EIA, 2014).    Using information provided by SENER to 

populate the model, distribution points receive shipments and satisfy a known local demand for 

each transshipment node.   As per the aggregate model assumptions, this demand represents the 

daily average for the most recent 12 month period.  Fixed demand is also necessary to feed the 

input-output model that operates on an assumption of short term stability.  Known fuel oil 

consumption by petroleum-fired electrical power plants located throughout Mexico augments the 

fuel oil demand component of the data set (GEO, 2014).   

 The storage capacity of each transshipment node was not available in the data.   This gap 

was alleviated through the use of equation (3.11).  A safety stock factor, inaccessible lower 

storage bound, and initial storage quantities are populated in the model using reasonable 

estimates from the data set (Miesner and Leffler, 2006: 290-291).  Although these values are 

subject to significant adjustment based on the known parameters of an individual network, they 

are fixed throughout the experimental implementation.   

4.2 Case Study Network Development 

Using PEMEX data, the geography of the network is established through the creation of 

an incidence matrix.  This NK matrix includes 10 supply points and 76 pipeline arcs across the 

column entries, and 75 distribution nodes including refinery supply points in the row entries.   
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The incidence matrix is formulated for each of four product lines including gasoline, diesel, 

kerosene, and fuel oil.  The incidence matrix is the essential component of the Q*Dem model 

that provides the flow balance at the transshipment nodes for each product line in equation (7)-

(9).  This product is too large to allow visual representation in this document.   

In the test case problem, six locations are selected based on historical actions and bases of 

operation from the Mexican campaign of 1846-47 as depicted in the West Point Atlas series 

shown in Figure 7  (“Mexican War Overview Map,” 2014).  While the concept of operations 

from the Mexican War is strategically obsolete, similar selection criteria should feed the 

planning process that determines the location of critical supply points.  The application of 

planning priorities by an operations staff will enable the analyst to select and prioritize these 

locations to best support decisive operations.   

 

Figure 7: Concept of Operation for Selection of Critical Locations (WP Atlas Series) 
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In order to demonstrate the effectiveness of a selective surgical strike, the illustrative 

experimentation plan interdicts six of the 76 network distribution nodes and associated facilities 

in the indicated region.  This plan establishes target regions within the historical example and 

takes into account the limited availability of strike capacity, planning resources, and funds 

available to allow a combatant commander to complete a strategic interdiction.   

For each of the six critical points, there are six associated pipelines and six transshipment 

or storage locations in the modern distribution network.  Additionally, each of these pipelines is 

serviced by the most proximate refinery and point of importation.  Pipeline, storage, refinery, and 

import locations are all vulnerable to disruption.  The interdictor could potentially target any or 

all of these vulnerabilities using a variety of means.   

In order to limit the number of design points to a combinatorial factor that focuses the 

decision space, vulnerable points are rank ordered by their criticality to the network and by 

limiting redundancy.  For this example the criticality assignments are based on geographical 

distance from a point of embarkation with the point of enemy resupply (4) given greater 

consideration.  There are six pipeline connections and storage locations that are vulnerable.  

There are three proximate refinery locations and importation points that service the six critical 

nodes.  In every case, the interdictor can decide to take no action.  The resulting design requires 

two factors with seven possible factor levels and two factors with four possible factor levels.  

JMP software creates a randomized design for each experiment to ensure that run order does not 

impact the results.  This design includes four replicates at each setting.  Each experimental 

design analysis description includes a snapshot of the design utilized to implement the model 

best suited to test each hypothesis. The network geography represented in the incidence matrix is 

displayed in Figure 8: Petroleum Network Schematic.  
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weights, wj,p, that accompany Qj,p are selected using critical locations of conflict and resupply 

from the Mexican campaign of 1846-47 (“Mexican War Overview Map,” 2014).   

 Once the network model is fully populated with the data set, the Q*Dem model is 

implemented using the CPLEX solver.  The full model using the illustrative test case data set as 

described in Table 2 requires 1352 constraints and 1244 decision variables.  An initial 

implementation of 7 days models the network immediately preceding a planned interdiction.  

This time period is characterized by the network manager optimizing shipments to critical 

distribution nodes in order to maximize supplies available prior to an anticipated interdiction. 

The analyst can vary this time period accordingly based upon the known time lapse between the 

manager’s anticipation of a disruption and its actual occurrence.  The output from this 

initialization provides a more accurate assessment of the initial storage volume of petroleum 

products at each distribution hub.  

The construction of an input-output matrix for a national economy can be a vast 

undertaking as described by Haimes et al. (2005). The data requirements include commodity 

purchases and highly specific production numbers for all sectors of industry that are included in 

the model.  Many agencies publish input-output matrices for various regional and state 

economies including the Organization for Economic Cooperation and Development (OECD, 

2014).  The publication by OECD is suitable for use in problem methodology, although it has 

aggregated the petroleum products industry.  The OECD data includes most major industries 

including those encompassing critical infrastructure such as transportation, medical care, 

agriculture, utilities, and government services.  A summary of this Input-Output Matrix for the 

country of Mexico as provided by OECD is included in Table 6 (OECD, 2014).  The full IO 

Matrix is attached in Appendix B.  An essential characteristic of this I-O Matrix is the 
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petroleum types are produced and distributed using common processes, equipment, labor pools, 

and logistical networks (SENER, 2014).  Although the decomposition of specific commodity 

applications within various dependent industries is widely documented, it would not be valid to 

disaggregate the amount of inputs required from other industries to produce each measure of 

diesel, gasoline, kerosene, and so forth.  For example, since most refined petroleum liquids are 

derived from nearly indistinguishable crude stocks and undergo similar distillation processing 

that consumes multiple inputs, there is no reliable methodology to determine what percentage of 

each input is responsible for rendering a unit of final petroleum product  (Inkpen and Moffit, 

2011 445).  These inputs are assigned to the petroleum refinement process, which is 

appropriately represented as the inputs necessary to produce the complete pool of refined 

petroleum products.   

4.3  Experiment Introduction 

 The experiments conducted using the notional case study include four scenarios and 

associated experiment sets.  Significance is determined using a t-statistic provided by JMP11 

software with a default 95% confidence setting and a value of α=.05  for all reported results.  The 

responses tested in each experiment include the availability of fuel summed across critical nodes 

between the interdiction and the commencement of decisive operations, defined in the scenario 

as 21 days.  Additionally, the daily demand shortages at all nodes are summed across the entire 

90 day model run in order to inform the analysis of cascading effects.  The responses are 

collected using a script that collects summations of the appropriate variables for each day of the 

90 day interval of the model.  For the lost value, the model sums the unmet demand for every 

location and product.  Independent daily storage volumes are available for all supply nodes 

within this automated model, and the user may choose to collect measurements of specific point 
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volume fluctuations in support of an applied strategic problem.  The script prices this shortfall 

using data available from SENER (2014) regarding the value of a barrel of each product, 

summarized in Table 7.  The model in question uses 2010 fuel price data to provide consistency 

with the input output data in Table 6 with consideration of price volatility.  The duration of 

decisive action and the planning horizon can be set at any level; the 21 and 90 day respective 

time horizons used for this illustrative analysis are subject to alteration by the analyst.   

Table 7: Cost (Pesos) of a Barrel (42 US Gallons) of Various Fuel Types (SENER, 2014) 

Cost (Mex$/BBL) 
Product Type/      Year 2006 2010
Pemex Magna gasoline 1057.19 1307.94
Pemex Diesel 862.54 1357.19
Jet fuel 1001.27 1342.85
Heavy fuel oil 517.96 975.11

 

4.4  Experiment 1:  Supply Interdiction Scenario 

 This initial experiment is intended to test hypothesis 1, which investigates whether supply 

interdiction is insufficient to deplete military fuel availability or inflict economic losses.  

Experiment 1 will also inform the analysis of cascading effects by determining the value of 

economic losses in the targeted economy.  The test includes experimentation with all six refinery 

locations within the PEMEX production system as well as four prominent importation points as 

indicated in Figure 8.  The factors for this experiment include the number of refinery 

interdictions and the number of importation points subjected to embargo strategy.  The refinery 

factor requires seven levels ranging from a scenario of no interdictions as the lowest level (0) 

through six interdictions as the highest level (6).  The factor for embargo of import points 

includes four levels ranging from no interdictions (Level 0) to three interdictions (Level 3).  
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ordering is in accordance with the labels in Figure 8 for both refineries and importation points.  

The system is allowed a 7 day warm up period that models the network manager’s efforts to 

maximize storage capacity at critical nodes within the network.  This warm up period is 

implemented by allowing the script in Appendix A to run for 7 daily iterations without 

interdiction using a weighting scheme consistent with the interdiction modeling phase.  Each of 

the 112 model runs is implemented using the MATLAB script in Appendix A by using the 

randomized matrix of the model runs with each replicate as shown in Table 8.  As each replicate 

of the model runs to completion, the responses are recorded appropriately as shown in columns 5 

and 6 of Table 8.   

 The results are tested using consistent distribution parameters to inform the restoration 

timeline.  Initial restoration periods (25% capacity) for this experiment use a minimum initial 

downtime for disrupted refineries of 10 days, most likely of 21 days, and maximum of 30 days to 

inform the β distribution as defined in equation (22)-(25).  These inputs replicate historical 

norms described by the US Department of Energy (EIA, 2007).  An exponential distribution 

derived from the β-distribution output determines the time lapse for additional restoration of 

resources using increments of 25%.  Importation effectiveness is modeled across a uniform 

distribution with limits specified between 75% and 90% effectiveness.  The high level of 

effectiveness results from the dependence on seaborne imports within this economy.  Tanker 

ships are historically vulnerable to embargo demands due to risk aversion within the shipping 

industry that is inherent to their significant expense (Inkpen and Moffett, 2011: 416).  

Importation disruptions remain effective throughout the conduct of operations that cease after 60 

days. 
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The initial investigation tests the significance of importation and refinery production on 

military availability at the onset of operations, set at 21 days from the interdiction. The results of 

the experiment of the effects of supply interdictions on the availability of military grade fuel 

appear in Figure 9.  The resulting empirical models and t-statistic results appear in Table 9.  The 

information in Table 9 required a screening feature in JMP11 that identifies significant factors, 

second order effects, and interactions.    The screening feature produces a half-normal plot that 

identifies which effects are most appropriate for the model.  The results confirm that importation 

is not significant to military availability as evident in the red highlighted t-statistic indicating that 

the importation factor does not significantly contribute to the model.  The model results confirm 

hypothesis H1.1 and supports the conclusion that an import embargo will not significantly affect 

military fuel availability within this case study.    Figure 9 shows the actual output of the model 

run against the prediction based on the empirical model produced in equation (29).  This figure 

provides a snapshot of the predictive power of this empirical model denoted by the distance 

between the predicted values on the horizontal axis and actual results on the vertical axis.  This 

graph shows the ability of the empirical model to estimate the behavior of the system and is 

summarized by the ANOVA chart in Table 9 and the R-squared predicted value of .76.  This 

model is reasonably accurate, but probably insufficient because of its reliance on only two 

significant effects that include refinery settings and their second-order effects.  Imports, while 

included in the model represented in Table 9, do no significantly contribute to the estimates. 

It is important to note that the scenario is quite limited in scope for an embargo scenario.  

While refinery interdictions necessarily occur briefly before decisive operations because of their 

often kinetic nature, sanctions and embargo strategies may remain in place months or years 

ahead of military actions.  However, the ability of the network manager to prioritize military 
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Table 9:  Statistical Analysis of Supply Interdiction Impact on Military Availability 

Analysis of Variance 
Source DF Sum of 

Squares
Mean Square F Ratio

Model 3 296492755 98830918 112.3730
Error 108 94984924 879490.03 Prob > F
C. Total 111 391477679 <.0001*
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  35856.36 298.32 120.19 <.0001* 
Refinery   -708.92 44.30  -16.00 <.0001* 
Import   -35.70 79.25  -0.45 0.6532 
(Refinery-4)*(Refinery-4)   -230.09 25.58  -8.99 <.0001* 
  

Because importation does not significantly impact the availability of military supplies at 

critical nodes for this scenario and time horizon, a streamlined empirical model can adequately 

represent the system without including importation as a factor.  This model uses the parameter 

estimates from Table 9 after removing the Import factor and is represented in equation (29).  In 

accordance with the hypothesis test convention, Z1 represents the supply factor settings and Z1
2 

accounts for the quadratic effects.  This empirical model includes an intercept and these two 

terms that show significance in the half-normal plot and statistical analysis. 

 y  35856.36 -708.92 Z1-230.09 Z1
2 (29) 

Because the interdiction of importation does not significantly impact military availability, 

the expected fuel availability summed at critical nodes in the scenario prior to decisive 

operations is influenced in this experiment by the level of disruption of refinery operations.  

Hypothesis H4.1 is accepted for importation factors, which do not demonstrate statistically 

significant effects on the availability of military grade fuels at critical supply locations.   

Refinery operations have a significant impact and inform the model in Equation (29) that 
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provides reasonably effective predictive power demonstrated by the R-squared adjusted statistic 

of .76 that determines the level of correlation.    

 As evident in Figure 10, the increase in the number of refineries interdicted has an 

increasing negative effect on military fuel availability as the system becomes incapable of 

providing sufficient supply at those locations.  However, even with complete interdiction, these 

critical nodes still have access to over 80% of their maximum levels of supply due to their 

storage inventory as evident in Figure 10.  This result indicates that while statistically significant, 

a refinery interdiction does not sufficiently hamper military availability in a manner that is likely 

to operationally impede the ability of an adversary to conduct operations during the time horizon.  

This test only considered availability at 6 critical node locations, which is less than 8% of total 

storage facilities.  There is sufficient military grade fuel stored throughout the system to weather 

a supply interdiction and maintain a robust stock level at critical nodes.  In conclusion, neither 

type of interdiction proved capable of substantially depleting the military grade fuel supplies at 

critical node locations to a magnitude that a combatant commander might find acceptable for a 

short campaign.  This alternative is not sufficiently effective as a stand-alone strategy within the 

boundaries of this case study and is unlikely to inform an acceptable military course of action 

under these circumstances. 
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Table 10: Statistical Results of Supply Interdiction on Value of Economic Losses 

Summary of Fit 
  
RSquare 0.853715
RSquare Adj 0.849652
Root Mean Square Error 4.567e+9
Mean of Response 2.97e+10
Observations (or Sum Wgts) 112
 
Analysis of Variance 
Source DF Sum of 

Squares
Mean Square F Ratio 

Model 3 1.3148e+22 4.383e+21 210.0949 
Error 108 2.253e+21 2.086e+19 Prob > F 
C. Total 111 1.5401e+22 <.0001* 
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t|
Intercept  3.075e+9 1.468e+9 2.10 0.0385*
Refinery  5.1658e+9 2.158e+8 23.94 <.0001*
Import  2.8195e+9 3.86e+8 7.30 <.0001*
   

 

 Codifying the significant factors leads to the empirical model in equation (30), which 

represents the expected economic loss at different factor settings of refinery (Z1) and importation 

(Z2) interdiction.  Replacing Z1 with the number of refinery interdictions and Z2 with the number 

of importation disruptions within equation (30) would result in an estimate of the value of 

economic loss inflicted by the solution.  This model would remain valid for any factor setting 

using the same model parameters. 

 y  3.075e+9 + 5.1658e+9 Z1 + 2.8195e+9 Z2 (30) 

 

 The implementation of equation (30) leads to the response surface presented in Figure 12, 

which graphically depicts the behavior of economic losses across a range of factor level settings 
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refined petroleum sector updates the constraint, Xi* in accordance with equation (21).  

Constraining the economic input of petroleum products available to the economy will then 

cascade through the economic model using the formulation implemented in equation (19).   

 The effects of this cascading is presented in Table 11, which shows several critical 

industries and the impact of the cascading effects expected for various factor level settings.  The 

results use data collected from the value of economic loss in the supply interdiction experiment.  

This analysis is assessed consistently throughout the results.  The t-statistic applied to each of the 

four sample points, n is shown in equation (31).  This lower bound allows the analyst to state that 

95% confidence in the conclusion that the resulting cascading effects will be no worse than the 

analytical outcome.   

 (.05, ) /LBCI x tinv n s n   (31) 

The color key in Table 11 specifies various levels of degradation within each industries at 

the indicated factor level combinations.  Within the selected economy, mining and transportation 

are at particularly high risk due to their reliance on refined petroleum as a buyer or provider of 

resources, respectively.  Other key industries such as agriculture, materials production, and 

finance begin to suffer increasing effects due to their relation to these activities.  In general, this 

economy proves relatively robust to all but the highest levels of supply interdiction, indicating 

that the economy is not overly dependent of fossil fuels for the duration of the time horizon.  

Some industries, such as textile and food production do not appear to suffer significant 

degradation despite extreme interdiction of petroleum product supplies.  Most courses of action 

considered in this scenario would allow for this economy to maintain a basic level of function.  

Complete interdiction of the supply network is necessary to severely disrupt the economy as long 

as the petroleum network management can implement reasonable efforts to restore capacity 
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capacities did not provide a substantial reduction in military grade fuel supplies available to the 

end user at critical locations over the 21 day timeframe for decisive operations.  Depending on 

the goals of the decision maker for an interdiction force, supply interdiction alone is not likely a 

sufficient solution to achieve a military or political end state within this economy. 

4.5  Experiment 2: Network Interdiction Experiment 

The objective of this experiment is to test hypothesis 2, which determines if network 

interdiction can effectively deplete military fuel availability or significantly impact economic 

losses.  Additionally, the experiment will ascertain the cascading effects on the targeted economy 

by analyzing the measured value of economic losses over the time horizon.  The test includes 

experimentation with six storage locations and polyducts within the PEMEX distribution system 

that services the critical nodes highlighted in Figure 8.  The factors for this experiment include 

the number of storage facility interdictions and the number of polyduct disruptions.  Both factors 

require seven levels ranging from a scenario of no interdictions as the lowest level (0) through 

six interdictions as the highest level (6).  These are discrete settings for this experiment, as the 

decision to interdict a storage facility or pipeline is binary.  However, the degree of the 

interdiction allows consideration of the factor settings as continuous functions.  Variation is 

introduced by the random variable generated by the distributions representing the duration of the 

disruption or the speed with which a network manager can implement alternative solutions to the 

network outage. 

Replicating the experiment four times requires 196 model runs to explore the entire 

decision space, which required 34 minutes and 41 seconds using an AMD Athlon II X2 215 2.7 

GHz Processor.  An abbreviated example of the first ten entries of this randomized matrix with 

the documented results produced in JMP11 is presented in Table 12.  The labels correspond with 
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 The results are tested using consistent distribution parameters to inform the restoration 

timeline.  Initial pipeline restoration periods (33% capacity) for this experiment use a minimum 

(a)  initial downtime of 4 days, most likely (b)  of 7, and maximum (c) of 14 days to inform the 

PERT analysis and β distribution as defined in equation (25).  This distribution is intended to 

replicate the full range of options for restoration of commodity flow by the network manager.  

This could include restoration of the pipeline, patching the disrupted section of the polyduct, or 

reliance on other means of product delivery such as rail or truck transport.   

 Initial storage facility restoration periods (33% capacity) for this experiment use a 

minimum initial downtime of 7 days, most likely of 14, and maximum of 30 days to inform the β 

distribution as defined in Equation (25).  The distribution allows restoration of 1/3 of the original 

storage capacity after this initial downtime period.  This distribution is intended to replicate the 

full range of options for restoration of storage capacity by the network manager.  This could 

include repair of the facility, implementation of temporary storage vessels such as tanker trailers 

or blivets, or reliance on other means of product delivery such as rail or truck transport (Trench, 

2001: 3).  An exponential distribution derived from the β parameter output determines the time 

lapse for additional restoration of resources using increments of 33.3% for both types of network 

architecture.   

 The initial results using the raw data produce an estimate of the reductions in military 

grade fuel availability given increasing levels of network interdiction.  These levels indicate the 

degree to which higher numbers of interdictions on storage and pipeline facilities within the 

scenario will deny fuel stocks to critical locations.  The results of the raw experimentation are 

presented in Figure 14.  These results are promising because they show a significant level of 

depletion of fuel availability with a limited number of storage interdictions.  For example, 
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availability within this case study.    This conclusion is valid for both storage interdiction and 

pipeline disruption courses of action within this scenario.   

Table 13: Statistical Analysis of Supply Interdiction Impact on Military Availability 

Summary of Fit 
  
RSquare 0.903227
RSquare Adj 0.90068
Root Mean Square Error 2310.276
Mean of Response 14001
Observations (or Sum Wgts) 196
 
Analysis of Variance 
Source DF Sum of 

Squares
Mean Square F Ratio 

Model 5 9465085787 1.893e+9 354.67 
Error 190 1014101112 5337374.30 Prob > F 
C. Total 195 1.0479e+10 <.0001* 
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t|
Intercept  30045.81 563.6496 53.31 <.0001*
Arc   -2545.82 82.50  -30.85 <.0001*
Storage   -2067.55 82.50  -25.06 <.0001*
(Arc-4)*(Arc-4)  314.44 47.63 6.60 <.0001*
(Arc-4)*(Storage-4)  439.26 41.25 10.65 <.0001*
(Storage-4)*(Storage-4)  287.73 47.63 6.04 <.0001*

 

 As evident in Table 13, pipeline and storage interdiction factors, the interaction term, and 

both second order interactions contribute significantly to the model.  The statistical significance 

of these factors suggests a predictive model as a response surface that augments the empirical 

solution presented in equation (32).  This empirical model uses Z3 to represent storage factors 

and Z4 to represent pipeline factors and accommodate their interactions and second-order effects. 

 y  30045.81 -2545.82*Z4 -2067.55*Z3 + 314.44*Z4
2 + 439.26*Z4*Z3 + 287.73* Z3

2 (32) 
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The response surface developed in JMP11 using the Gaussian process tool is presented in 

Figure 16.  The model shows how varying levels of network interdictions will impact the 

availability of military grade fuel at critical locations across the model run.  The response surface 

indicates that increasing levels of storage and pipeline interdiction will impact the military 

availability in a similar manner.  A strategy that combines these interdiction factors shows 

significant potential as an effective strategy to interdict the delivery of military grade fuels.  The 

benefit of an applicable response surface is that higher order effects are effectively captured to 

show what region of the decision space is most applicable to achieve the end state of the decision 

maker while considering potential operational constraints.  It is notable that this process could 

also utilize a discrete classification for factor settings.  Although the behavior is most certainly 

continuous because of potential changes in the impacts of an interdiction, the decision to 

interdict a particular target is binary in nature.  This analysis could instead utilize a step function 

response surface, but the smoothed function shown in Figure 16 is more readily interpreted.  

Additionally, a discrete response surface would still require curvature at the edges of each setting 

in order to produce a coherent surface.   
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leads to the conclusion that  H2.2A  is accepted; network interdictions of pipelines and storage 

facilities will significantly impact the value of economic loss created by unmet demand.   

Table 14: Statistical Analysis of Network Interdiction Impacts on Economic Losses 

Summary of Fit 
  
RSquare 0.814524
RSquare Adj 0.811626
Root Mean Square Error 6.396e+8
Mean of Response 1.58e+10
Observations (or Sum Wgts) 196
 
Analysis of Variance 
Source DF Sum of 

Squares
Mean Square F Ratio 

Model 3 3.4492e+20 1.15e+20 281.0586 
Error 192 7.8541e+19 4.091e+17 Prob > F 
C. Total 195 4.2346e+20 <.0001* 
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| 
Intercept  1.334e+10 1.469e+8 90.83 <.0001* 
Arc  639106318 22842308 27.98 <.0001* 
Storage  69294350 22842308 3.03 0.0028* 
(Arc-4)*(Arc-4)   -94315403 13188013  -7.15 <.0001* 

 

In the interdiction experiment, the result of the impact on the value of economic losses is 

very similar between the experimental results and the empirical model.  As observed in Figure 

18, the affect on the value of economic loss at increasing levels of storage and pipeline 

interdiction is modest.  While there are modest improvements, the test indicates that the network 

manager loses more value from their prioritization scheme than is created by the network 

interdiction.  The network optimization process allows the allocation of fuel storage capacity to 

critical locations at the expense of other storage locations.  This results in economic losses based 

on unmet demand resulting from prioritization strategies rather than interdiction.  The effect of 

this prioritization on the value of economic loss is apparent in Figure 18 because the setting of 



129 

 

zero pipeline and arc interdictions does not result in a zero value for economic losses.  These 

economic losses are a result of the prioritization strategy that requires the networks to limit 

distribution to non-critical demand locations in order to build critical storage capacity.  The 

trends are mirrored in the empirical data on the left and the raw data graphic on the right of 

Figure 18.  Since the manager anticipates and response to an interdiction based on maintaining 

supply at critical locations, other nodes in the system will experience shortfalls based on the 

implementation of the Q-Demand maximum flow optimization.  This policy is effective in 

maintaining supply inventories at the critical locations for as long as possible but at the cost of 

increased economic losses elsewhere in the system.   If the analyst determines that this scheme is 

not realistic, the value of Qj,p requires a minimum value of one to ensure that each supply node 

continues to receive shipments capable of replenishing daily demand for as long as possible 

within the time horizon. 

Although the three factors highlighted in Table 14 indicated significant impacts based on 

the t-statistic, Figure 18 shows very limited practical impact within the scenario and time 

horizon.   Despite the conclusions of the hypothesis, we can observe that network interdiction 

results in a less economic impact on the economy represented in the case study than was found in 

the supply scenario.  The contribution of storage is the most severely limited despite its 

statistically significant contribution.  Figure 18 shows the relationship between the empirical 

representation of the experimental results on the left and the raw data graph on the right.  These 

representations of the results clearly support the power of the empirical model.  Additionally, the 

limited impact of network interdiction on economic loss is highlighted by the limited response 

adjustments as factor levels increase. 
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impact limited areas within the economy and lack the widespread shortages that would instigate 

catastrophic cascading effects. 

4.6  Experiment 3:  Supply and Network Interdiction 

 Experiment 3 uses a combination of significant factors from experiments 1 and 2 in order 

to test Hypothesis 3.  The results of experiment 3 will determine what combinations of known 

significant factors are best suited to an effective interdiction strategy.  Additionally, 

combinations of these factors and their interactions will inform a characterization of expected 

cascading effects determined using the value of economic losses measured within the 

experiment. 

 Experiments 1 and 2 revealed that storage, pipeline, and refinery interdiction had 

significant impacts on the availability of military grade fuel at the critical node locations.  The 

disruption of imports did not cause a significant decrease in the availability of military grade 

fuel.  Additionally, there was no statistically significant interaction with refinery interdiction to 

indicate a contribution to military availability.  Therefore, it is not a viable military strategy 

against this particular economy under the parameters for this scenario because the resulting 

humanitarian impacts are without military justification.  The analyst may consider a lengthened 

time period of import point disruption if appropriate given the strategic constraints for their 

problem set.   

 Removing import points as factors in the experiment leaves three remaining factors.  In 

order to limit the decision space in this experiment, the refineries considered for interdiction are 

limited to three locations with proximate location to a critical demand node.  This leaves four 

factors for refineries and the original seven factors settings for pipeline and storage point 

interdiction defined in experiment 2.  Implementing this experiment with four replications 
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4.6.3 Supply and Network Experiment Results 

Because the re-strike scenario constrains the time period over which restoration might 

occur, the associated results show a much lower occurrence of variance and produce an empirical 

model of substantial predictive power and limited variance.  This result is evident in the re-strike 

fitted model shown to the right in Figure 19.   The results for both models in Figure 19 indicate a 

well-fitted empirical representation that adequately captures the experimental results.  The re-

strike scenario has improved predictive power indicated by its R-squared adjusted value of 

greater than 97%.  This advantage is due to the reduction in variance induced by limiting the 

time period of restoration.   
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Comparison of the results highlights similar trends in the significance of factors and 

various interactions.  Within both models, pipeline and storage capacities show significant 

impact on the availability of military grade fuel at critical nodes.  Similar two-factor interactions 

and second order interactions are also significant.  The re-strike model includes several three 

term interactions that show relevance beyond what is present in the single strike model.  In both 

models, refinery factors were not independently significant.  However, the factor associated with 

refineries can remain in the models because both experiments revealed significant interactions 

with refinery interdiction levels as a component. 

 As a result of both experiments, hypothesis H3.1 is rejected, which supports acceptance of 

the alternative hypothesis H3.1A; a combined strategy of supply and network interdiction 

significantly impacts the availability of military grade fuels at critical locations.  Although 

refinery interdictions are not significant factors, their significant interaction with other factors 

supports their inclusion in the model.  This hypothesis is therefore confirmed for both strike 

scenarios and across all factors. 
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shows the streamlined models for storage and arc interdictions developed in JMP11 for single 

strike and re-strike courses of action.  These figures represent the empirical model defined by the 

parameters in Table 17.  The use of high order models produces a surface that allows the analyst 

to identify the region best suited to meet the needs of the combatant commander.  Within this 

scenario, the re-strike response surface clearly demonstrates a greater area of acceptable fuel 

availability with options that require fewer independent targets.  However, re-strike will require 

additional interdiction resources required to ensure that the network infrastructure remains 

offline for a deterministically modeled time period.  

 Determining how these competing scenarios will impact the surrounding economy 

requires analysis of the magnitude of economic loss induced by the interdiction strategy.  The 

results of the experiment reveal that there is a greater magnitude of variation within the data set 

for the value of economic losses.  Initially, the single strike scenario suggested substantial 

violations of the constant variance assumption required to implement design of experiments.  As 

observed in Figure 22, the predictive model in the left figure and the associated residual model in 

the right figure indicate a severe conical shape that indicates the presence of non-constant 

variance within the model run.   
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Figure 22: Statistical Residual Analysis of Single Strike Impact on Value of Economic Loss 

 The presence of non-constant variance violates an underlying principle required for the 

use of design of experiments.  Therefore, the use of a transformation is appropriate.  Due to the 

size of the numbers in question, transforming the value of the economic loss by using its 

logarithmic value is a possible approach to alleviate issues with increasing variance.  The natural 

logarithm of each experiment replication transforms the value of economic loss for this result.  

The recalculated results appear in Figure 23, which apply the transformation to each response 

data point.  The residual analysis in the right side of Figure 23 shows a much improved residual 

analysis.  While there is still some remaining conical shape, several outlying data points 

exaggerate its severity.  The improvement indicated by the residual analysis for the logarithmic 

transformation in Figure 23 indicates a more plausible compliance with constancy of variance 

assumptions.  The presence of non-constant variance likely resulted from the increasing variation 

associated with each interdiction factor setting.  As the model adds interdiction targets to the 

scenario, they are accompanied by a distribution that increases the variability within the model.  
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Fewer interdiction points results in less variation potential within the model.  Another method of 

reducing the presence of non-constant variance would be an experimental design that limits the 

factor settings to a similar amount of interdictions.  Although the experiment would explore a 

smaller decision space, there would be less variation between the factor settings. 

LOG Transformation of Single Strike Impact on Economic Loss

 

Figure 23: LOG Transform Residual Analysis of Single Strike Impact on Economic Loss 

 The re-strike scenario statistical analysis shows no indication of the problems with 

constant variance that were present in the single strike analysis.  In fact, the loss of economic 

value shows extremely tight statistical results in comparison to the single strike option.  The 

results of this experiment are shown in Figure 24 and include a residual chart on the right.  The 

dispersion pattern of the residual analysis suggests that the assumption of non-constant variance 

is achieved.  Additionally, the predictive power of this model indicates a more capable model 

with an R-squared adjusted value of .99.  This result suggests that within this re-strike scenario, 

the model can predict value of economic losses with very low levels of variance.  This is 

particularly useful when precise knowledge of the potential cascading effects is appropriate, such 

as a future nation building scenario.   
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Table 18: Statistical Comparison of Experimental Results for Single Strike and Re-strike  

Scenario 
Summary of Fit Single Strike Restrike 

RSquare 0.891 0.991805
RSquare Adj 0.889 0.99171
Root Mean Square Error 0.083 9.29E+08
Mean of Response 23.725 3.01E+10
Observations 784 784
Analysis of Variance 
Source DF SS MS F Ratio Prob > F 

Single Strike (Using Logarithmic Scaling) 

Model 7 44.13 6.30472 897.77   
Error 776 5.44 0.00702 Prob > F 
C. Total 783 49.58     <.0001 

Restrike 
Model 9 8.09E+22 8.99E+21 10408.73   
Error 774 6.68E+20 8.64E+17   Prob > F 
C. Total 783 8.16E+22     <.0001 

Parameter Estimate Std Error t Ratio Prob>|t| SS 
F 
Ratio 

Single Strike (using Logarithmic Scaling) 

Intercept 22.944547 0.025965 883.68 <.0001     
Refinery 0.24 0.00953 25.4 <.0001 4.53 645.33
Arc 0.03 0.00149 20.29 <.0001 2.89 411.54
Storage 0.004 0.00149 2.86 0.0044 0.057 8.17
Refinery*Refinery 0.047 0.0029 15.9 <.0001 1.77 252.75
Refinery*Arc -0.009 0.0013 -6.79 <.0001 0.32 46.14
Arc*Arc -0.005 0.0008 -6.35 <.0001 0.28 40.36
Refinery*Refinery*Refinery -0.021 0.0044 -4.76 <.0001 0.15 22.63

Restrike 

Intercept -5.03E+08 3.43E+08 -1.47 0.1431   
Refinery 1.00E+10 1.06E+08 94.86 <.0001 7.77E+21 8998.56
Arc 966080122 49548758 19.5 <.0001 3.28E+20 380.15
Storage 75492911 16595406 4.55 <.0001 1.79E+19 20.69
Refinery*Refinery 1.63E+09 33190812 49.02 <.0001 2.08E+21 2402.52
Refinery*Arc -1.74E+08 14843383 -11.72 <.0001 1.19E+20 137.25
Arc*Arc -1.76E+08 9581362 -18.41 <.0001 2.93E+20 338.87
Refinery*Refinery*Refinery -6.80E+08 49477942 -13.74 <.0001 1.63E+20 188.85
Refinery*Refinery*Arc -87059715 16595406 -5.25 <.0001 2.38E+19 27.52
Arc*Arc*Arc 60036653 5975029 10.05 <.0001 8.72E+19 100.96
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 Using a comparison of the empirical models developed using the parameters for each 

scenario that were shown in Table 18, the modeler can assess suitable response surfaces to 

determine the range of the decision space appropriate to support the concept of operations.  

Assessing the results from Table 18, the involvement of storage interdiction at target nodes has 

considerably less practical impact on economic losses in terms of observed reductions.  Despite 

its statistical significance, the critical storage node interdictions do not provide nearly the impact 

on the value of economic losses that are found in refinery and pipeline disruptions in this 

scenario during the specified time horizons.  The strategist should anticipate that the network 

will continue to deliver fuel to the other 70 demand locations over the time horizon despite the 

loss of specific storage capacity locations.  Therefore, the most meaningful surface profile 

involves refinery and pipeline factors and is presented in Figure 25.   This result compares the 

resulting model from the single strike scenario on the left of Figure 25 and the re-strike scenario 

on the right.  Despite the transformation used in the single strike results and the much lower 

variance in the re-strike option, the surfaces show striking similarities in shape.  This indicates 

that the impacts resulting from refinery and pipeline interdictions consistently affected the value 

of economic losses.  This result is effective in validating the responsiveness of the network 

model to parameter adjustments. 
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Figure 25: Surface Profile Comparison of Single Strike and Re-strike Empirical Models for 

Impact on Lost Economic Value 

 The practical analysis of impacts on the value of the economic losses shows a large 

increase for the re-strike scenario.  This is expected because the infrastructure remains off line 

for a longer time period, which will force the model to accrue larger unmet demand resulting in 

higher economic loss.  This impact is evident in the comparison of the practical results shown in 

Figure 26.  There is a clear increase based on the refinery factor levels that is evident in the chart.  

This impact of this difference is essential to determining cascading effects. 
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This resulted in a model with greater predictive power and more consistency in the resulting data 

points.  This consistency leads to a tighter estimate of the value of economic losses.  The 

magnitude of economic losses is greater, which results in higher levels of degradation across a 

range of other industries.  However, analysis does not include the effects of economic recovery 

during or after a 90-day campaign.   

4.7  Experiment 4: Natural Disaster Scenario 

 Another potential application of the proposed model is prediction of the impact and 

cascading effects resulting from the disruption caused by a natural disaster such as a hurricane or 

earthquake.  A notional example using the network case study data is presented in Figure 27 with 

a potential projected path of a weather related disruption.  This notional example includes a 

disruption to storage and pipeline infrastructure points that are directly in the path of the 

disruption.  This also includes the precautionary or residual impacts on major infrastructure 

including the importation and refinement points that are highlighted in yellow.  This scenario 

results in a disruption factor for the highlighted refinement and importation points, and two 

disruption factors for storage and pipeline facilities.  In lieu of military availability, the model 

measures the availability of resources at proximate population centers.  The weighted value 

associated with Qj,p receives an appropriate assignment in order to ensure network consistency, 

and the warm-up period is reduced to four days to allow some buildup of resources by the 

network manager. 
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 The results for this experiment were statistically significant.  The statistical analysis 

presented in Figure 28 show extremely tight variances for the empirical model shown in Table 

21.  This low variance is partly a result of the practical reduction in the critical availability, 

which is only reduced by less than 4% as a result of the natural disaster.  However, there are 

significant terms present in the statistical model, including the arc, storage, and several 

interaction terms highlighted in Table 21.   

 

Figure 28: Predictive Analysis of Natural Disaster Scenario on Critical Availability 

  The t-statistic presented in Table 21 provides sufficient statistical evidence to reject 

hypothesis H4.1 and confirm its alternative H4.1A; Natural Disaster disruptions significantly 

impact the availability of fuels at the critical supply locations.  This conclusion holds true for arc 

and storage factors as well as their interactions and second-order effects.  Hypothesis H4.1 is 

confirmed for supply factors, which do not show statistical significance in limiting availability to 

critical local economies.  Additionally, the model shows excellent predictive power with an R-

squared value near 1.These likely results from the limited impact of a single refinery and 
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importation point.  The network manager has significant resources to apply to circumvent these 

supply disruptions within the model.  This estimate is realistic due to the greatly increased ability 

to recover from a natural disaster of limited scope as opposed to a widespread and potentially 

catastrophic interdiction campaign.  The network manager can devote the restoration resources to 

these specific locations with less collateral risk to recovery operations or employees.   

Table 21: Statistical Analysis of Natural Disaster Impacts on Availability 

Summary of Fit 
  
RSquare 0.997307
RSquare Adj 0.997209
Root Mean Square Error 56.90915
Mean of Response 57357.37
Observations (or Sum Wgts) 144
 
Analysis of Variance 
Source DF Sum of 

Squares
Mean Square F Ratio 

Model 5 165485603 33097121 10219.42 
Error 138 446934 3238.6509 Prob > F 
C. Total 143 165932537 <.0001* 
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t|
Intercept  55798.19 19.55 2853.60 <.0001*
Arc  1104.90 5.80 190.23 <.0001*
Storage  118.72 5.80 20.44 <.0001*
(Arc-2)*(Arc-2)   -1198.12 10.06  -119.10 <.0001*
(Arc-2)*(Storage-2)   -81.23 7.11  -11.42 <.0001*
(Storage-2)*(Storage-2)   -133.99 10.06  -13.32 <.0001*

 

 Unfortunately, the results for this analysis do not show visible variation for response 

surfaces fitted to the model when using a graphic scaled at zero.  However, a graph of the region 

of interest is presented in Figure 29.  This graphic only shows the response region where the 

changes are observed and the vertical axis is not scaled to zero.  While representative of the 

volatile region of the design, this surface would appear flat to the naked eye with all axes scaled 
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 The results for the impact on the value of economic loss show statistical significance for 

the refinery outage and pipeline disruption as highlighted in Table 22.  These results support the 

rejection of hypothesis H4.2 .  The results confirm the alternate hypothesis for pipeline and 

refinery disruption factors; natural disaster disruptions will significantly impact the measureable 

value of economic losses based on unmet demand.   Storage and Import factors were statistically 

insignificant in this experiment, indicating that limited scenario natural disaster disruptions of 

similar infrastructure types is not critical enough to increase the value of economic loss in a 

national economy.  Further analysis of this problem set might apply a similar experiment to a 

local or regional economy where high resolution data exists. 

 

Table 22: Statistical Analysis of Natural Disaster Impact on Value of Economic Loss 

Summary of Fit 
  
RSquare 0.685757
RSquare Adj 0.681299
Root Mean Square Error 1.031e+9
Mean of Response 1.35e+10
Observations (or Sum Wgts) 144
 
Analysis of Variance 
Source DF Sum of 

Squares
Mean Square F Ratio 

Model 2 3.2704e+20 1.635e+20 153.8483 
Error 141 1.4986e+20 1.063e+18 Prob > F 
C. Total 143 4.769e+20 <.0001* 
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t|
Intercept  8.3152e+9 3.436e+8 24.20 <.0001*
Refinery  2.9575e+9 1.718e+8 17.21 <.0001*
Arc  355888489 1.052e+8 3.38 0.0009*
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 While the economic loss from oil theft over time is undisputed, the significance of the 

effects on the system remains less clear.   The methodology from this study contains a 

mechanism to assess the losses caused by increasing levels of theft across a network of pipelines.  

Within the NK sub-matrices, the network architecture is determined by a series of -1, 0, and 1 

values as described in section 3.2.  The use of the value 1 indicates that 100% of the refined fuel 

shipped from any transshipment node, Dj reaches the subsequent node, Dj+1 in accordance with 

the assumptions of flow balance.  However, the theft of resources directly from a pipeline is 

unknown to the network manager in magnitude and location resulting in unmeasured losses that 

occur along the shipment route.  The modeler can represent the potential severity of this loss by 

applying a multiplier, g to the portion of the matrix that is affected.  This multiplier would 

transform the 1 in an appropriate location of an NK matrix to a reduced value such as .99 as an 

example of the estimate of lost volume.  The reduced value describes a pipeline where 99% of 

the product shipped reaches its destination while illicit traffickers remove 1% of the flow. 

 Using such an approximation, the automated model will assess the impacts of increasing 

levels of illicit trafficking on the same pipeline segments from the interdiction experiment.  

Refinery and storage interdiction remain in effect for the excursion.  The factor levels for black 

market theft range from 1-5% of the economy for this demonstration.  When conducting the 

experiment using up to 3% theft rate out of each of the six pipeline segments, there was no 

significant impact on the availability of fuel to military locations or on the value of economic 

loss within the system.  This result appears in Table 24, and the highlighted black market factors 

show no substantial contribution to the modeled responses of military availability or the value of 

economic losses.  The contributions of Storage and Refinery interdictions and measured 

responses remain consistent with the results from Experiment 3.   
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Table 24: Analysis of Theft Rate up to 3% 

Summary of Fit for Value of Economic Loss 
  
RSquare 0.885247
RSquare Adj 0.883154
Root Mean Square Error 1.885e+9
Mean of Response 1.84e+10
 
Analysis of Variance 
Source DF SS Mean Square F Ratio 
Model 6 9.0206e+21 1.503e+21 423.0034 
Error 329 1.1693e+21 3.554e+18 Prob > F 
C. Total 335 1.019e+22 <.0001* 
 
Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t| 
Intercept 3.2108e+9 8.962e+8 3.58 0.0004* 
Refinery 5.0417e+9 3.275e+8 15.40 <.0001* 
Storage 164691063 51424436 3.20 0.0015* 
BlkMkt 134230789 1.26e+8 1.07 0.2874 
(Refinery-2.5)*(Refinery-2.5) 1.3517e+9 1.028e+8 13.14 <.0001* 
(Refinery-2.5)*(Storage-4) 97000060 45995414 2.11 0.0357* 
   
Summary of Fit for Military Availability 
  
RSquare 0.886763
RSquare Adj 0.885048
Root Mean Square Error 2261.935
Mean of Response 22634.12
Observations (or Sum Wgts) 336
 
Analysis of Variance 
Source DF SS Mean Square F Ratio 
Model 5 1.3222e+10 2.6444e+9 516.8494 
Error 330 1688394821 5116347.9 Prob > F 
C. Total 335 1.491e+10 <.0001* 
 
Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t|
Intercept 34844.358 536.4057 64.96 <.0001*
Storage  -3116.246 61.69932  -50.51 <.0001*
Refinery  -222.0628 110.3711  -2.01 0.0450*
BlkMkt  -95.64207 151.1319  -0.63 0.5273
(Storage-4)*(Storage-4) 179.939 35.62212 5.05 <.0001*
(Refinery-2.5)*(Refinery-2.5) 225.14727 123.3986 1.82 0.0690
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 However, when the level of interdiction is increased to 5% of the flow rate through all six 

critical pipelines, the black market factor impacts the value of economic loss at a statistically 

significant level.  This result is demonstrated in Table 25 and shows that black market theft up to 

a 5% level will significantly impact the value of economic loss during the interdiction campaign.   

The removal of 5% of flow rates across these six polyduct accounts for over 300,000 barrels 

during a 90 day model run.  While this loss is practically minor compared to the interdiction 

impacts caused by refinery and storage node disruptions, its presence will not influence the 

availability of military grade fuels at critical locations.  

Table 25: Analysis of Theft Rate up to 5% on the Value of Economic Loss 

Summary of Fit 
  
RSquare 0.877908
RSquare Adj 0.876246
 
Analysis of Variance 
Source DF Sum of 

Squares
Mean Square F Ratio

Model 6 1.2336e+22 2.056e+21 528.5031
Error 441 1.7156e+21 3.89e+18 Prob > F
C. Total 447 1.4052e+22 <.0001*
 
Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t|
Intercept 2.8716e+9 8.066e+8 3.56 0.0004*
Refinery 5.1249e+9 2.967e+8 17.27 <.0001*
Storage 169363887 46593426 3.63 0.0003*
BlkMkt 176588613 83348854 2.12 0.0347*
(Refinery-2.5)*(Refinery-2.5) 1.3854e+9 93186852 14.87 <.0001*
(Refinery-2.5)*(Storage-4) 108694587 41674427 2.61 0.0094*
(Refinery-2.5)*(Refinery-
2.5)*(Refinery-2.5) 

 -3.026e+8 1.389e+8  -2.18 0.0299*

 

 The production of this model did call into question the practicality of such wide spread 

theft.  The removal and illicit trafficking of over 300,000 barrels of fuels constitutes an industrial 
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sized undertaking when considering the level of effort required for shipping and profitably 

marketing such a huge quantity of liquid.  However, further arithmetic analysis presented in 

Table 26 shows that this amount of fuel represents approximately 5 daily tanker truck loads 

stolen from each of six locations across a vast geographical area of potential infiltration.  When 

considered in this context, it is not infeasible that a major criminal cartel could potentially move 

this much stolen product and remain undetected.  A cartel could further diversify this process by 

increasing the number of theft locations across a polyduct arc. 

Table 26: Feasibility Analysis of 5% Theft Rate 

Arithmetic Analysis of Feasibility for 5% Black Market Theft Rate 

3163.95 Average Volume of 5% Black Market Loss (Hundreds of Barrels) 
316395.10 Average Volume Loss in Barrels 

5000.00 Capacity of a Standard Tanker Truck (US Gallons) 
42.00 Gallons/Barrel (US) 

119.05 Barrels/Truck 
2657.72 Total Truckloads Required 

90.00 Total Days of Model Run 
29.53 Total Truckloads per Day 
6.00 Minimum Number of Theft Locations 
4.92 Maximum Number of Trucks per Theft Location 

  

 While the theft of fuel intended for use in the black market is insufficient to impact the 

model of cascading effects, the impacts of this fuel re-entering the local marketplace may bear 

consideration in a future study.  The manipulation of the automated model to increase the level 

of theft would still require a feasibility analysis to ensure that the rates of illicit trafficking are 

within the known capacity of the suspected criminal enterprise.  
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4.10 Conclusions 

 The results demonstrate the capacity of an analyst or strategist to investigate factors 

within a known distribution network using a methodology that provides insight regarding the 

primary and secondary impacts of a fuel network interdiction strategy.  The responses measured 

in fuel availability and valued using unmet demand provide the statistical means to determine 

which factors are most effective at producing desired effects.  The propriety and capability of 

different courses of action can inform a recommendation for meeting a combatant commander’s 

intent.   

 The network model proved versatile and effective for inclusion in various experiments.  

The use of experimentation is an effective means of exploring the decision space and selecting 

an appropriate course of action that supports decisive operations.  The analyst can implement this 

methodology in order to achieve outcomes that improve the success of supported commanders 

while limiting the difficulty of follow on missions by managing cascading effects.   

 While the analysis was confined to critical military areas based on a concept of 

operations, the model provides the opportunity to analyze a variety of scenarios.  Initial plans are 

subject to testing and alteration to meet specific strategic goals or mitigate impacts to a desirable 

level.  All parameter and factor settings are flexible, allowing a wide variety of analysis. 
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V. Conclusions and Recommendations 

5.1 Contributions of Study 

The US Armed Forces enjoys the operational advantages provided by an ability to limit 

an adversary’s access to strategic commodities.  Petroleum and its refined products are key 

targets for this type of interdiction due to the prominence of energy resources in many aspects of 

military and economic portfolios.  A number of tools exist that allow combatant commanders to 

conduct these interdictions against various portions of an adversary’s infrastructure.  While this 

study did not focus on the specific means of interdiction, various kinetic, diplomatic, economic, 

and cyber based tools may apply to disruption of a petroleum supply network.   

 The interdiction of a strategic commodity is a potentially powerful tool.  The combatant 

commander has an obligation to limit the scope of disruption to the level necessary to reach the 

desired operational effect.  The network model created in this study demonstrates a methodology 

to determine the impact of an interdiction strategy on military availability and adverse effects 

using experimentation.  The study also demonstrated a tool that is available to investigate the 

degree of cascading effects using Leontief input-output modeling.   

 The results of a related case study showed how some factors may have no statistically 

significant impact on the strategic outcome as related to the availability of military grade fuels in 

the specified scenario.  The strategist might consider the resources and cascading effects related 

to an interdiction campaign and determine whether the measureable impacts on the targeted areas 

justify the expense.  A concept of operations that included future investment in the disrupted 

economy has an even higher interest in maintaining economic functionality. 
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5.2 Significance of Results 

 A series of notional scenarios demonstrated the features of the model.  The results of the 

case study indicated no potential for the limitation of military fuel supplies using interdiction of 

refined petroleum imports in the time horizon of the scenario.  While specific to this case study, 

the results clearly indicated that the network contained sufficient resiliency to ensure delivery of 

products to critical locations despite a disruption of imports.  Given a longer time horizon, the 

effects of a blockade of imports could warrant further investigation.  This result informs future 

planners that might consider the long term impact prior to initiating diplomatically and 

economically expensive boycott or embargo options.  Additionally, interdiction of imports will 

cascade through other industries if the resulting disruption sufficiently lengthy.   

 Storage facilities represented the most promising target for limiting the availability of 

fuel to military targets while limiting cascading effects based on the scenario results.  This 

appears to be a foregone conclusion since the lack of a facility to store and transfer fuel is 

necessary to maintain a military supply infrastructure.  However, historical data from the Gulf 

War demonstrated that refinery points are priorities for interdiction with limited military success 

(Hall, 1998: 594).  Experimental results in the case study showed that limitations on storage and 

delivery infrastructure was the most effective means of limiting military availability without 

inflicting cascading effects in the investigated scenarios. 

 Campaign strategies will affect disruption and cascading impacts with much less variance 

when the planner possesses the ability to re-strike or disrupt a facility for a consistent time 

period.  Variance increases quickly as the interdiction campaign expands due to the 

unpredictability of restoration times. 
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 When employed using a natural disaster formulation, the case study proved insufficiently 

disaggregated to reasonably predict the network impacts or cascading effects.  Ideally, the impact 

of a local outage caused by a natural disaster should resource local economic and network data.  

The analysis did indicate how to investigate natural disaster scenarios. 

5.3 Recommended Paths forward 

 The model exhibits the extent of constraints, capacities, and network infrastructure 

resolution available through open source research and publicly accessible data bases.  This data 

informed the case study and allowed the construction of a functioning automated network model.  

Using more site specific information related to transshipment nodes, pipeline interactions, and 

refinery operations, a future endeavor could populate the constraint set with more precise 

information.  The model could also extend into the supply chain of raw crude stocks that fuel 

refinery operations as an additional disruption point or capacity constraint. 

 Experimentation on this network model used a consistent time horizon implementation 

that calculated a daily optimization and updated the starting criteria prior to the subsequent 

iteration.  Neither the network model nor resulting Leontief formulation involved a truly 

dynamic formulation.  A potential improvement on this model would implement the network 

automation using precise time data involving the production and routing of petroleum products 

resourcing time dependent demand patterns.  The potential model requires substantial 

engineering level data regarding pipeline and refinery function as well as established demand 

patterns.  Such fidelity, however, will result in a larger model with greater solution complexity. 

 A model that is unconstrained by national boundaries may better accommodate more 

complex petroleum economy such as the OPEC members in the Persian Gulf region.  In this 
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case, a complete regional supply and distribution network would allow the modeler to best 

represent the impacts of a disruption across multiple interdependent nations.     

 Additionally, an excursion investigating black market effects targeted at specified 

network arcs modeled the anticipated level of theft.  The results provided insights on the impact 

of illicit trade in the refined petroleum industry.  However, since this product will ultimately re-

enter the local marketplace through black market sales, the impact on smaller regional economies 

remains unclear.  Investigation into the impacts of black market sales on local economic 

conditions would provide further refinement on the impact of cascading effects. 

 While this study did not focus on the efficiency of the recommended automation package, 

there is potential for further investigation based on the needs of a strategist.  For the purposes of 

demonstration and clarity, this study utilized a relatively small decision space.  Only six critical 

nodes, pipelines, and storage facilities entered consideration.  Furthermore, the assigned priority 

of these facilities refined the decision space to limit the factor levels rather than assessing the full 

combinatorial decision space.  Instead of interdicting the most critical storage location as the 

initial factor level, the strategist may require a strategy that assesses each possible combination at 

every factor level.  The 784 runs tested in experiment 3 would quickly become 27,783 potential 

courses of action requiring 111,132 model runs.  Implementation of experiment 3 using 4 

replications requires 784 model runs.   This automated model with a CPLEX solver needed 8327 

seconds to run to completion using an AMD Athlon II X2 215 2.7 GHz Processor, which equates 

to 2 hours, 18 minutes.  Running the full factor combinations would require over 327 hours (2 

weeks) using the same processor in order to calculate every combination within the current 

decision space.  Expanding the decision space beyond the 6 critical nodes would further 

exacerbate this issue.  Implementation of the automation in a supercomputer is a realistic method 
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of exploring such a large decision space.  An implementation in a high performance computing 

environment would provide a potential area of future study for similar problems and allow a 

decision maker to explore a large decision space in a much shorter amount of time. 

5.4 Conclusions 

 The versatility of this methodology and its automated solution allow a modeler to 

consider a large decision space within the confines of a network.  The methodology can expand 

to a larger network and that includes multiple countries, smaller regions, and more fully 

integrated dependent systems.  Sufficient data regarding distribution could extend the supply 

chain through independent consumers such as airports or power plants.   

 This study provides a basis for determining the functionality of a petroleum product 

distribution network and measuring impacts to dependent industries.  Augmentations to this type 

of network could inform interdiction strategies through sound experimentation plans.   

 Using data sets with improved resolution and completeness enables the most accurate 

constraint set and precise network topography when contemplating an experimental analysis of 

interdiction strategies.  The analyst or campaign planner is well advised to consider collecting 

the necessary information on an economy or network of interest as early as possible.  The 

planner should also consider updating this information for consistency and accuracy as 

intelligence improves in order to provide rapid feedback on the effectiveness of an interdiction 

strategy.  The construction of network topography, an informed experimentation plan, and 

possession of current intelligence data including regional input-output analysis will enable a 

rapid and consistent recommendation to a decision maker who requires a comprehensive 

assessment of an interdiction strategy.   Given adequate information, a variety of strategies and 

scenarios may receive substantial investigation prior to operations. 
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Appendix A. MATLAB 2014 and CPLEX (V 12.5) Implementation 

%Required inputs include ArcFO, DSS, Dem, ArcCap 
%ArcFO is the incidence matrix of the distribution network 
%DSS is the storage quantity based on distance from supply points 
%Dem is the demand data 
%ArcCap is the capacities of the pipelines 
A = ArcFO; 
[m,n]=size(A); 
%Set number of Products 
p = 4; 
%Introduces the number of supply points to adjust matrices 
numSP = 10; 
SP = n-numSP; 
  
%Storage Capacity Builder 
%Inaccessible Lower Bound 
PercLB = .2; 
%Safety stock and Safety Fill Factor 
SSF = 1.05; 
%Storage Capacity Design uses Cycle Time (DSS) in days distance from 
Supply 
StorCap = SSF * Dem * diag(DSS(:,:)); 
% Inaccessible Tank Bottoms 
LBStorCap = PercLB * StorCap; 
  
%Set Initial Storage  
PercIstor = .5; 
IStor = PercIstor * StorCap; 
StorInt = StorCap; 
LBStorInt = LBStorCap;  
  
%Matrix Build of Flow Constraints for each node Set and product type 
AFO = [A zeros(m,n) zeros(m,n) zeros(m,n); 
    zeros(m,n) A zeros(m,n) zeros(m,n); 
    zeros(m,n) zeros(m,n) A zeros(m,n); 
    zeros(m,n) zeros(m,n) zeros(m,n) A]; 
%Q*Demand decision matrix for each product type 
DemQ = [diag(Dem(1,:)) zeros(m,m) zeros(m,m) zeros(m,m); 
    zeros(m,m) diag(Dem(2,:)) zeros(m,m) zeros(m,m); 
    zeros(m,m) zeros(m,m) diag(Dem(3,:)) zeros(m,m); 
    zeros(m,m) zeros(m,m) zeros(m,m) diag(Dem(4,:))]; 
%Flow Equation LHS 
FOEq = [AFO -DemQ zeros(m*p) zeros(m*p)]; 
%Flow Equation RHS 
FOEqC = [zeros(1,m*p)]; 
  
%Storage recalculation 
%Storage Adjustments at each node 
DeltaStor = diag(ones(1,m*p)); 
SlackDem = diag(ones(m*p,1)); 
  
%(Can also be specified by type/location using MTX) 
%MPercIstor = diag(PercIstor(:,:)); 
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%Istor = MPercIstor * StorCap; 
MGAvail = 0; 
%Storage Adjustment Flow Balance Equality LHS 
StorAdjEq = [zeros(m*p,n*p) DemQ -DeltaStor SlackDem]; 
%Demand Requirements for each of 4 Products Storage Adj RHS 
DemC = [Dem(1,:) Dem(2,:) Dem(3,:)  Dem(4,:)]; 
  
%Storage Capacity Constraints LHS 
StorC = [zeros(m*p,n*p) zeros(m*p) DeltaStor zeros(m*p)]; 
  
%Arc Flow Constraints LHS 
SumArcFO = [zeros(n-numSP,n-SP) diag(ones(1,n-numSP)) zeros(n-numSP,n-
SP) diag(ones(1,n-numSP)) zeros(n-numSP,n-SP) diag(ones(1,n-numSP)) 
zeros(n-numSP,n-SP) diag(ones(1,n-numSP))]; 
SumFO = [SumArcFO zeros(n-numSP,m*p) zeros(n-numSP,m*p) zeros(n-
numSP,m*p); 
        -SumArcFO zeros(n-numSP,m*p) zeros(n-numSP,m*p) zeros(n-
numSP,m*p)]; 
  
%Initialize Daily Values 
StorAdj = zeros(p,m); 
Shortfall = zeros(m*p,1); 
  
for d = 1:7 
%  Adjust storage capacity from previous day's numbers 
IStor = IStor + StorAdj; 
%Storage Capacity Constraints RHS 
StorA = [StorCap] - [IStor]; 
StorAinv = [IStor]-[LBStorCap]; 
StorMax = [StorA(1,:) StorA(2,:) StorA(3,:)  StorA(4,:)]; 
StorMin = [StorAinv(1,:) StorAinv(2,:) StorAinv(3,:)  StorAinv(4,:)]; 
  
  
%Arc Flow Constraints RHS 
UBArcC = ArcCap(1,:); 
LBArcC = ArcCap(2,:); 
BArcC = [UBArcC -LBArcC]; 
            
%Supply Availability Constraint LHS 
  
%Supply Constraint RHS 
SupC = [Supply(1,:) inf(1,n-numSP) Supply(2,:) inf(1,n-numSP) 
Supply(3,:) inf(1,n-numSP) Supply(4,:) inf(1,n-numSP)]; 
 % Constraint Functions to load CPLEX    
  
Aeq = [FOEq; StorAdjEq]; 
beq = [FOEqC DemC]'; 
  
Aineq = [SumFO; StorC; -StorC]; 
bineq = [BArcC StorMax StorMin]'; 
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f = [zeros(1,n*p) QW(1,:) QW(2,:) QW(3,:) QW(4,:) zeros(1,m*p) 
zeros(1,m*p)]; 
%Upper Bound of Q 
UBQ = 2; 
LBQ = .8; 
ub = [SupC UBQ*ones(1,m*p) inf(1,m*p) DemC]'; 
lb = [zeros(1,n*p) LBQ*ones(1,m*p) -inf(1,m*p) zeros(1,m*p)]'; 
  
  
% Shortfall must be bounded between zero and demand, as slack cannot 
exceed the 
% demanded quantity of product supply. 
  
%QDem is initially bounded between zero and two.  As the system is 
%interdicted, QDem can become negative to denote the removal of 
commodities 
%from local storage nodes. 
  
  
Aeq; 
beq; 
  
Aineq; 
bineq; 
addpath('I:\setup\Desktop\CPEX\cplex\matlab\x64_win64') 
  
f = -f; 
  
  
ub = ub; 
lb = lb; 
    
    
   options = cplexoptimset; 
   options.Display = 'off'; 
    
   [x, fval, exitflag, output] = cplexlp (f, Aineq, bineq, Aeq, beq, 
lb, ub, [ ], options); 
       
    
   %fprintf ('\nSolution status = %s \n', output.cplexstatusstring); 
   %fprintf ('Solution value = %f \n', fval); 
   %disp ('Values ='); 
   %disp (x'); 
  
   %Determine how much is added or removed from storage to meet daily 
demand 
StorAdj1 = zeros(m,1); 
StorAdj2 = zeros(m,1); 
StorAdj3 = zeros(m,1); 
StorAdj4 = zeros(m,1); 
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for s = 1:m 
StorAdj1(s,1) = x((n*p)+(m*p)+s,1); 
StorAdj2(s,1) = x((n*p)+(m*p)+s+m,1); 
StorAdj3(s,1) = x((n*p)+(m*p)+s+2*m,1); 
StorAdj4(s,1) = x((n*p)+(m*p)+s+3*m,1); 
end 
StorAdj = [StorAdj1';StorAdj2';StorAdj3';StorAdj4']; 
  
end 
  
IStorInitial = IStor + StorAdj; 
  
%for r = 1:3 
     
for e = 1:784 
%Required inputs include ArcFO, DSS, Dem, ArcCap 
%ArcFO is the incidence matrix of the distribution network 
%DSS is the storage quantity based on distance from supply points 
%Dem is the demand data 
%ArcCap is the capacities of the pipelines 
A = ArcFO; 
[m,n]=size(A); 
%Set number of Products 
p = 4; 
%Introduces the number of supply points to adjust matrices 
numSP = 10; 
SP = n-numSP; 
  
%Storage Capacity Builder 
%Inaccessible Lower Bound 
PercLB = .2; 
%Safety stock and Safety Fill Factor 
SSF = 1.05; 
%Storage Capacity Design uses Cycle Time (DSS) in days distance from 
Supply 
StorCap = SSF * Dem * diag(DSS(:,:)); 
% Inaccessible Tank Bottoms 
LBStorCap = PercLB * StorCap; 
  
%Set Initial Storage  
IStor = IStorInitial; 
StorInt = StorCap; 
LBStorInt = LBStorCap;  
  
%Matrix Build of Flow Constraints for each node Set and product type 
AFO = [A zeros(m,n) zeros(m,n) zeros(m,n); 
    zeros(m,n) A zeros(m,n) zeros(m,n); 
    zeros(m,n) zeros(m,n) A zeros(m,n); 
    zeros(m,n) zeros(m,n) zeros(m,n) A]; 
%Q*Demand decision matrix for each product type 
DemQ = [diag(Dem(1,:)) zeros(m,m) zeros(m,m) zeros(m,m); 
    zeros(m,m) diag(Dem(2,:)) zeros(m,m) zeros(m,m); 
    zeros(m,m) zeros(m,m) diag(Dem(3,:)) zeros(m,m); 
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    zeros(m,m) zeros(m,m) zeros(m,m) diag(Dem(4,:))]; 
%Flow Equation LHS 
FOEq = [AFO -DemQ zeros(m*p) zeros(m*p)]; 
%Flow Equation RHS 
FOEqC = [zeros(1,m*p)]; 
  
%Storage recalculation 
%Storage Adjustments at each node 
DeltaStor = diag(ones(1,m*p)); 
SlackDem = diag(ones(m*p,1)); 
  
%(Can also be specified by type/location using MTX) 
%MPercIstor = diag(PercIstor(:,:)); 
%Istor = MPercIstor * StorCap; 
MGAvail = 0; 
%Storage Adjustment Flow Balance Equality LHS 
StorAdjEq = [zeros(m*p,n*p) DemQ -DeltaStor SlackDem]; 
%Demand Requirements for each of 4 Products Storage Adj RHS 
DemC = [Dem(1,:) Dem(2,:) Dem(3,:)  Dem(4,:)]; 
  
%Storage Capacity Constraints LHS 
StorC = [zeros(m*p,n*p) zeros(m*p) DeltaStor zeros(m*p)]; 
  
%Arc Flow Constraints LHS 
SumArcFO = [zeros(n-numSP,n-SP) diag(ones(1,n-numSP)) zeros(n-numSP,n-
SP) diag(ones(1,n-numSP)) zeros(n-numSP,n-SP) diag(ones(1,n-numSP)) 
zeros(n-numSP,n-SP) diag(ones(1,n-numSP))]; 
SumFO = [SumArcFO zeros(n-numSP,m*p) zeros(n-numSP,m*p) zeros(n-
numSP,m*p); 
        -SumArcFO zeros(n-numSP,m*p) zeros(n-numSP,m*p) zeros(n-
numSP,m*p)]; 
     
%Create a Beta and Exp Distribution for Storage Interdiction Time 
aS = 4; 
bS = 7; 
cS = 14; 
muS = (aS+4*bS+cS)/6; 
if bS-muS == 0 
bS=bS-1; 
end 
  
muS = (aS+4*bS+cS)/6; 
  
alpha1S = ((muS-aS)*(2*bS-aS-cS))/((bS-muS)*(cS-aS)); 
alpha2S = (alpha1S*(cS-muS))/(muS-aS); 
  
pdS = makedist('Beta','a',alpha1S,'b',alpha2S); 
downtimeS1 = random(pdS)*(cS-aS)+aS; 
downtimeS2 = random(pdS)*(cS-aS)+aS; 
downtimeS3 = random(pdS)*(cS-aS)+aS; 
downtimeS4 = random(pdS)*(cS-aS)+aS; 
downtimeS5 = random(pdS)*(cS-aS)+aS; 
downtimeS6 = random(pdS)*(cS-aS)+aS; 
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pdeS1 = makedist('Exponential','mu', downtimeS1); 
pdeS2 = makedist('Exponential','mu', downtimeS2); 
pdeS3 = makedist('Exponential','mu', downtimeS3); 
pdeS4 = makedist('Exponential','mu', downtimeS4); 
pdeS5 = makedist('Exponential','mu', downtimeS5); 
pdeS6 = makedist('Exponential','mu', downtimeS6); 
  
recoveryS1 = random(pdeS1); 
recoveryS2 = random(pdeS2); 
recoveryS3 = random(pdeS3); 
recoveryS4 = random(pdeS4); 
recoveryS5 = random(pdeS5); 
recoveryS6 = random(pdeS6); 
  
%Create Beta and Exp Distribution Random # for Arc Restoration 
aA = 7; 
bA = 14; 
cA = 30; 
muA = (aA+4*bA+cA)/6; 
if bA-muA == 0 
bA=bA-1; 
end 
bA = bA; 
muA = (aA+4*bA+cA)/6; 
  
alpha1A = ((muA-aA)*(2*bA-aA-cA))/((bA-muA)*(cA-aA)); 
alpha2A = (alpha1A*(cA-muA))/(muA-aA); 
  
pdA = makedist('Beta','a',alpha1A,'b',alpha2A); 
  
downtimeA1 = random(pdA)*(cA-aA)+aA; 
downtimeA2 = random(pdA)*(cA-aA)+aA; 
downtimeA3 = random(pdA)*(cA-aA)+aA; 
downtimeA4 = random(pdA)*(cA-aA)+aA; 
downtimeA5 = random(pdA)*(cA-aA)+aA; 
downtimeA6 = random(pdA)*(cA-aA)+aA; 
  
pdeA1 = makedist('Exponential','mu', downtimeA1); 
pdeA2 = makedist('Exponential','mu', downtimeA2); 
pdeA3 = makedist('Exponential','mu', downtimeA3); 
pdeA4 = makedist('Exponential','mu', downtimeA4); 
pdeA5 = makedist('Exponential','mu', downtimeA5); 
pdeA6 = makedist('Exponential','mu', downtimeA6); 
  
recoveryA1 = random(pdeA1); 
recoveryA2 = random(pdeA2); 
recoveryA3 = random(pdeA3); 
recoveryA4 = random(pdeA4); 
recoveryA5 = random(pdeA5); 
recoveryA6 = random(pdeA6); 
  
%Create Beta and Exp Distribution Random # for Refinery Restoration 
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aR = 10; 
bR = 21; 
cR = 30; 
muR = (aR+4*bR+cR)/6; 
if bR-muR == 0 
bR=bR-1; 
end 
bR = bR; 
muR = (aR+4*bR+cR)/6; 
  
alpha1R = ((muR-aR)*(2*bR-aR-cR))/((bR-muR)*(cR-aR)); 
alpha2R = (alpha1R*(cR-muR))/(muR-aR); 
  
pdR = makedist('Beta','a',alpha1R,'b',alpha2R); 
  
  
% Determine Percentage of Gasoline Production remaining after 
Interdiction 
PGPub = .25; 
pdPGP = makedist('Uniform', 'Lower',0,'Upper',PGPub); 
PGP = random(pdPGP); 
  
  
%Variables for Interdiction or Embargo of Imports, Min/Max 
effectiveness 
aI = .75; 
bI = .9; 
%Uniform Distribution used to determine success level of Trade 
%Embargo/Blockade 
pdI = makedist('Uniform','Lower',aI,'Upper',bI); 
Imp = 1-random(pdI); 
  
     
downtimeR1 = random(pdR)*(cR-aR)+aR; 
downtimeR2 = random(pdR)*(cR-aR)+aR; 
downtimeR3 = random(pdR)*(cR-aR)+aR; 
downtimeR4 = random(pdR)*(cR-aR)+aR; 
downtimeR5 = random(pdR)*(cR-aR)+aR; 
downtimeR6 = random(pdR)*(cR-aR)+aR; 
  
pdeR1 = makedist('Exponential','mu', downtimeR1); 
pdeR2 = makedist('Exponential','mu', downtimeR2); 
pdeR3 = makedist('Exponential','mu', downtimeR3); 
pdeR4 = makedist('Exponential','mu', downtimeR4); 
pdeR5 = makedist('Exponential','mu', downtimeR5); 
pdeR6 = makedist('Exponential','mu', downtimeR6); 
  
recoveryR1 = random(pdeR1); 
recoveryR2 = random(pdeR2); 
recoveryR3 = random(pdeR3); 
recoveryR4 = random(pdeR4); 
recoveryR5 = random(pdeR5); 
recoveryR6 = random(pdeR6); 
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%Initialize Daily Values 
StorAdj = zeros(p,m); 
Shortfall = zeros(m*p,1); 
  
  
for d = 1:90 
%  Adjust storage capacity from previous day's numbers 
IStor = IStor + StorAdj; 
  
%Interdiction of Storage nodes 
  
if EXPMT(e,2) > 6 
    if d < downtimeS1 
     
    %Node 9; Saltillo 
     
    
        IStor(1:p,13)=0; 
        StorCap(1:p,13) = 0; 
        LBStorCap(1:p,13) = 0; 
  
     
    elseif d < downtimeS1 + recoveryS1 
      
        StorCap(1:p,13) = .33*StorInt(1:p,13); 
        LBStorCap(1:p,13) = 0; 
      
    elseif d < downtimeS1 + (2*recoveryS1) 
     
        StorCap(1:p,13) = .67*StorInt(1:p,13); 
        LBStorCap(1:p,13) = 0; 
      
    else 
     
        StorCap(1:p,13) = StorInt(1:p,13); 
        LBStorCap(1:p,13) = 0; 
     
    end 
  
  
end 
  
if EXPMT(e,2) > 3 
    if d < downtimeS2 
     
    %node 11 Moclova 
         
        IStor(1:p,15)=0; 
        StorCap(1:p,15) = 0; 
        LBStorCap(1:p,15) = 0; 
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    elseif d < downtimeS2 + recoveryS2 
              
        StorCap(1:p,15) = .33*StorInt(1:p,15); 
        LBStorCap(1:p,15) = 0; 
      
    elseif d < downtimeS2 + (2*recoveryS2) 
      
        StorCap(1:p,15) = .67*StorInt(1:p,15); 
        LBStorCap(1:p,15) = 0; 
     
    else 
      
        StorCap(1:p,15) = StorInt(1:p,15); 
        LBStorCap(1:p,15) = 0;     
  
    end 
  
  
end 
  
if EXPMT(e,2) > 1 
    if d < downtimeS3  
     
        % Node 13; Juarez 
             
        IStor(1:p,17)=0; 
        StorCap(1:p,17) = 0; 
        LBStorCap(1:p,17) = 0; 
     
    elseif d < downtimeS3 + recoveryS3 
     
         
        StorCap(1:p,17) = .33*StorInt(1:p,17); 
        LBStorCap(1:p,17) = 0; 
      
    elseif d < downtimeS3 + (2*recoveryS3)      
         
        StorCap(1:p,17) = .67*StorInt(1:p,17); 
        LBStorCap(1:p,17) = 0; 
      
    else         
         
        StorCap(1:p,17) = StorInt(1:p,17); 
        LBStorCap(1:p,17) = 0; 
        
    end 
  
 end 
  
 if EXPMT(e,2) > 2 
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    if d < downtimeS4  
     
        % Node 38: Veracruz 
     
    
        IStor(1:p,46)=0; 
        StorCap(1:p,46) = 0; 
        LBStorCap(1:p,46) = 0; 
     
    elseif d < downtimeS4 + recoveryS4 
      
         
        StorCap(1:p,46) = .33*StorInt(1:p,46); 
        LBStorCap(1:p,46) = 0; 
     
    elseif d < downtimeS4 + (2*recoveryS4) 
      
        StorCap(1:p,46) = .67*StorInt(1:p,46); 
        LBStorCap(1:p,46) = 0; 
     
    else        
         
        StorCap(1:p,46) = StorInt(1:p,46); 
        LBStorCap(1:p,46) = 0; 
     
    end 
  
  
end 
  
if EXPMT(e,2) > 4 
    if d < downtimeS5  
     
        %Node 24: SanLuis Potosi 
     
     
        IStor(1:p,59)=0; 
        StorCap(1:p,59) = 0; 
        LBStorCap(1:p,59) = 0; 
     
    elseif d < downtimeS5 + recoveryS5 
      
         
        StorCap(1:p,59) = .33*StorInt(1:p,59); 
        LBStorCap(1:p,59) = 0; 
      
    elseif d < downtimeS5 + (2*recoveryS5) 
      
        StorCap(1:p,59) = .67*StorInt(1:p,59); 
        LBStorCap(1:p,59) = 0; 
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    else         
        
        StorCap(1:p,59) = StorInt(1:p,59); 
        LBStorCap(1:p,59) = 0; 
     
    end 
  
end 
  
if EXPMT(e,2) > 5 
    if d < downtimeS6  
     
        %Node 36: Puebla 
     
    
        IStor(1:p,75)=0; 
        StorCap(1:p,75) = 0; 
        LBStorCap(1:p,75) = 0; 
     
    elseif d < downtimeS6 + recoveryS6      
          
        StorCap(1:p,75) = .33*StorInt(1:p,75); 
        LBStorCap(1:p,75) = 0; 
     
    elseif d < downtimeS6 + (2*recoveryS6)     
          
        StorCap(1:p,75) = .67*StorInt(1:p,75); 
        LBStorCap(1:p,75) = 0; 
      
    else          
         
        StorCap(1:p,75) = StorInt(1:p,75); 
        LBStorCap(1:p,75) = 0; 
     
     
    end 
  
end 
  
  
%Storage Capacity Constraints RHS 
StorA = [StorCap] - [IStor]; 
StorAinv = [IStor]-[LBStorCap]; 
StorMax = [StorA(1,:) StorA(2,:) StorA(3,:)  StorA(4,:)]; 
StorMin = [StorAinv(1,:) StorAinv(2,:) StorAinv(3,:)  StorAinv(4,:)]; 
  
  
%Arc Flow Constraints RHS 
UBArcC = ArcCap(1,:); 
LBArcC = ArcCap(2,:); 
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% Interdiction of Arc Capacity 
if EXPMT(e,3) > 1 
     
%Saltillo 
    if d < downtimeA1  
    UBArcC(1,9) = 0; 
    LBArcC(1,9) = 0; 
     
    elseif d < downtimeA1 + recoveryA1 
    UBArcC(1,9) = .5*UBArcC(1,9); 
    LBArcC(1,9) = .5*LBArcC(1,9); 
     
    elseif d < downtimeA1 + (2*recoveryA1) 
    UBArcC(1,9) = .75*UBArcC(1,9); 
    LBArcC(1,9) = .75*LBArcC(1,9); 
    else 
     
    end 
end 
  
if EXPMT(e,3) > 4 
    %Moclova 
    if d < downtimeA2 
    UBArcC(1,14) = 0; 
    LBArcC(1,14) = 0; 
    elseif d < downtimeA2 + recoveryA2 
    UBArcC(1,14) = .5*UBArcC(1,14); 
    LBArcC(1,14) = .5*LBArcC(1,14); 
     
    elseif d < downtimeA2 + (2*recoveryA2) 
    UBArcC(1,14) = .75*UBArcC(1,14); 
    LBArcC(1,14) = .75*LBArcC(1,14); 
    else 
     
    end 
end 
  
if EXPMT(e,3) > 6 
    %Juarez 
    if d < downtimeA3 
    UBArcC(1,13) = 0; 
    LBArcC(1,13) = 0; 
     
    elseif d < downtimeA3 + recoveryA3 
    UBArcC(1,13) = .5*UBArcC(1,13); 
    LBArcC(1,13) = .5*LBArcC(1,13); 
     
    elseif d < downtimeA3 + (2*recoveryA3) 
    UBArcC(1,13) = .75*UBArcC(1,13); 
    LBArcC(1,13) = .75*LBArcC(1,13); 
    else 
     
    end 
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end 
  
if EXPMT(e,3) > 3 
    %Puebla 
    if d < downtimeA4 
    UBArcC(1,38) = 0; 
    LBArcC(1,38) = 0; 
     
    elseif d < downtimeA4 + recoveryA4 
    UBArcC(1,38) = .5*UBArcC(1,38); 
    LBArcC(1,38) = .5*LBArcC(1,38); 
     
    elseif d < downtimeA4 + (2*recoveryA4) 
    UBArcC(1,38) = .75*UBArcC(1,38); 
    LBArcC(1,38) = .75*LBArcC(1,38); 
     
    else 
     
    end 
end 
  
if EXPMT(e,3) > 2 
    %San Luis Potosi 
    if d < downtimeA5 
    UBArcC(1,53) = 0; 
    LBArcC(1,53) = 0; 
     
    elseif d < downtimeA5 + recoveryA5 
    UBArcC(1,53) = .5*UBArcC(1,53); 
    LBArcC(1,53) = .5*LBArcC(1,53); 
     
    elseif d < downtimeA5 + (2*recoveryA5) 
    UBArcC(1,53) = .75*UBArcC(1,53); 
    LBArcC(1,53) = .75*LBArcC(1,53); 
    else 
     
    end 
end 
  
if EXPMT(e,3) > 5 
    %Veracruz 
    if d < downtimeA6 
    UBArcC(1,35) = 0; 
    LBArcC(1,35) = 0; 
    elseif d < downtimeA6 + recoveryA6 
    UBArcC(1,35) = .5*UBArcC(1,35); 
    LBArcC(1,35) = .5*LBArcC(1,35); 
     
    elseif d < downtimeA6 + (2*recoveryA6) 
    UBArcC(1,35) = .75*UBArcC(1,35); 
    LBArcC(1,35) = .75*LBArcC(1,35); 
    else 
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    end 
end 
  
  
BArcC = [UBArcC -LBArcC]; 
            
%Supply Availability Constraint LHS 
  
%SumSupOP = [diag(ones(1,numSP)) zeros(numSP,m-1)  diag(ones(1,numSP)) 
zeros(numSP,m-1) diag(ones(1,numSP)) zeros(numSP,m-1) 
diag(ones(1,numSP)) zeros(numSP,m-1)]; 
%bineq = [Supply(1,:) Supply(2,:) Supply(3,:)  Supply(4,:)]'; 
%Supply Constraint RHS 
SupC = [Supply(1,:) inf(1,n-numSP) Supply(2,:) inf(1,n-numSP) 
Supply(3,:) inf(1,n-numSP) Supply(4,:) inf(1,n-numSP)]; 
  
  
%Interdiction of Refinery Supplies 
if EXPMT(e,1) > 1 
    %Cadereyta 
    if d < downtimeR1 
    SupC(1,5) = PGP*SupC(1,5); 
    SupC(1,92) = 0; 
    SupC(1,179) = 0; 
    SupC(1,266) = 0; 
     
    elseif d < downtimeR1 + recoveryR1 
    SupC(1,5) = .25*SupC(1,5);     
    SupC(1,91) = .25*SupC(1,91); 
    SupC(1,177) = .25*SupC(1,177); 
    SupC(1,263) = .25*SupC(1,263); 
     
    elseif d < downtimeR1 + (2*recoveryR1) 
    SupC(1,5) = .50*SupC(1,5); 
    SupC(1,91) = .50*SupC(1,91); 
    SupC(1,177) = .50*SupC(1,177); 
    SupC(1,263) = .50*SupC(1,263); 
         
    elseif d < downtimeR1 + (3*recoveryR1)     
    SupC(1,5) = .75*SupC(1,5); 
    SupC(1,91) = .75*SupC(1,91); 
    SupC(1,177) = .75*SupC(1,177); 
    SupC(1,263) = .75*SupC(1,263); 
    else 
         
    end 
end 
  
if EXPMT(e,1) > 3 
    %Tula 
    if d < downtimeR2 
    SupC(1,7) = PGP*SupC(1,7); 
    SupC(1,94) = 0; 
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    SupC(1,181) = 0; 
    SupC(1,268) = 0; 
     
    elseif d < downtimeR2 + recoveryR2 
    SupC(1,7) = .25*SupC(1,7); 
    SupC(1,93) = .25*SupC(1,93); 
    SupC(1,179) = .25*SupC(1,179); 
    SupC(1,265) = .25*SupC(1,265); 
     
    elseif d < downtimeR2 + (2*recoveryR2) 
    SupC(1,7) = .50*SupC(1,7); 
    SupC(1,93) = .50*SupC(1,93); 
    SupC(1,179) = .50*SupC(1,179); 
    SupC(1,265) = .50*SupC(1,265); 
         
    elseif d < downtimeR2 + (3*recoveryR2) 
    SupC(1,7) = .75*SupC(1,7); 
    SupC(1,91) = .75*SupC(1,91); 
    SupC(1,179) = .75*SupC(1,179); 
    SupC(1,265) = .75*SupC(1,265); 
    else 
    end 
end 
   
if EXPMT(e,1) > 2 
    %Minatatlan 
    if d < downtimeR3 
    SupC(1,9) = PGP*SupC(1,9); 
    SupC(1,95) = 0; 
    SupC(1,181) = 0; 
    SupC(1,267) = 0; 
     
    elseif d < downtimeR3 + recoveryR3 
    SupC(1,9) = .25*SupC(1,9); 
    SupC(1,95) = .25*SupC(1,95); 
    SupC(1,181) = .25*SupC(1,181); 
    SupC(1,267) = .25*SupC(1,267); 
     
    elseif d < downtimeR3 + (2*recoveryR3) 
    SupC(1,9) = .50*SupC(1,9); 
    SupC(1,95) = .50*SupC(1,95); 
    SupC(1,181) = .50*SupC(1,181); 
    SupC(1,267) = .50*SupC(1,267);         
     
    elseif d < downtimeR3 + (3*recoveryR3) 
    SupC(1,9) = .75*SupC(1,9); 
    SupC(1,95) = .75*SupC(1,95); 
    SupC(1,181) = .75*SupC(1,181); 
    SupC(1,267) = .75*SupC(1,267); 
    else 
    end 
end 
     
 if EXPMT(e,1) > 4 
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    %Madero 
    if d < downtimeR4 
    SupC(1,6) = PGP*SupC(1,6); 
    SupC(1,92) = 0; 
    SupC(1,178) = 0; 
    SupC(1,264) = 0; 
     
    elseif d < downtimeR4 + recoveryR4 
    SupC(1,6) = .25*SupC(1,6); 
    SupC(1,92) = .25*SupC(1,92); 
    SupC(1,178) = .25*SupC(1,178); 
    SupC(1,264) = .25*SupC(1,264); 
     
    elseif d < downtimeR4 + (2*recoveryR4) 
    SupC(1,6) = .50*SupC(1,6); 
    SupC(1,92) = .50*SupC(1,92); 
    SupC(1,178) = .50*SupC(1,178); 
    SupC(1,264) = .50*SupC(1,264);         
     
    elseif d < downtimeR4 + (3*recoveryR4) 
    SupC(1,6) = .75*SupC(1,6); 
    SupC(1,92) = .75*SupC(1,92); 
    SupC(1,178) = .75*SupC(1,178); 
    SupC(1,264) = .75*SupC(1,264); 
    else 
    end 
 end 
  
 if EXPMT(e,1) > 5 
    %Salina Cruz 
    if d < downtimeR5 
    SupC(1,10) = PGP*SupC(1,10); 
    SupC(1,96) = 0; 
    SupC(1,182) = 0; 
    SupC(1,268) = 0; 
     
    elseif d < downtimeR5 + recoveryR5 
    SupC(1,10) = .25*SupC(1,10); 
    SupC(1,96) = .25*SupC(1,96); 
    SupC(1,182) = .25*SupC(1,182); 
    SupC(1,268) = .25*SupC(1,268); 
     
    elseif d < downtimeR5 + (2*recoveryR5) 
    SupC(1,10) = .50*SupC(1,10); 
    SupC(1,96) = .50*SupC(1,96); 
    SupC(1,182) = .50*SupC(1,182); 
    SupC(1,268) = .50*SupC(1,268);         
     
    elseif d < downtimeR5 + (3*recoveryR5) 
    SupC(1,10) = .75*SupC(1,10); 
    SupC(1,96) = .75*SupC(1,96); 
    SupC(1,182) = .75*SupC(1,182); 
    SupC(1,268) = .75*SupC(1,268); 
    else 
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    end 
 end 
  
 if EXPMT(e,1) > 6 
    %Salamanca 
    if d < downtimeR6 
    SupC(1,8) = PGP*SupC(1,8); 
    SupC(1,94) = 0; 
    SupC(1,180) = 0; 
    SupC(1,266) = 0; 
     
    elseif d < downtimeR6 + recoveryR6 
    SupC(1,8) = .25*SupC(1,8); 
    SupC(1,94) = .25*SupC(1,94); 
    SupC(1,180) = .25*SupC(1,180); 
    SupC(1,266) = .25*SupC(1,266); 
     
    elseif d < downtimeR6 + (2*recoveryR6) 
    SupC(1,8) = .50*SupC(1,8); 
    SupC(1,94) = .50*SupC(1,94); 
    SupC(1,180) = .50*SupC(1,180); 
    SupC(1,266) = .50*SupC(1,266);         
     
    elseif d < downtimeR6 + (3*recoveryR6) 
    SupC(1,8) = .75*SupC(1,8); 
    SupC(1,94) = .75*SupC(1,94); 
    SupC(1,180) = .75*SupC(1,180); 
    SupC(1,266) = .75*SupC(1,266); 
    else 
    end 
end 
  
  
 %Eliminate Percentage of Imported Middle Distillate Supply    
  
 if d < 60 
    if EXPMT(e,4) > 1 
     %import point 1 
    SupC(1,88) = Imp*SupC(1,88); 
    SupC(1,175) = Imp*SupC(1,175); 
    SupC(1,262) = Imp*SupC(1,262); 
    end 
  
    if EXPMT(e,4) > 3 
     %Import point 3 
    SupC(1,90) = Imp*SupC(1,90); 
    SupC(1,177) = Imp*SupC(1,177); 
    SupC(1,264) = Imp*SupC(1,264); 
     
    end 
  
    if EXPMT(e,4) > 2 
     %import point 4 
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    SupC(1,91) = Imp*SupC(1,91); 
    SupC(1,178) = Imp*SupC(1,178); 
    SupC(1,265) = Imp*SupC(1,265); 
    end 
 end     
 % Constraint Functions to load CPLEX    
  
Aeq = [FOEq; StorAdjEq]; 
beq = [FOEqC DemC]'; 
  
Aineq = [SumFO; StorC; -StorC]; 
bineq = [BArcC StorMax StorMin]'; 
  
  
f = [zeros(1,n*p) QW(1,:) QW(2,:) QW(3,:) QW(4,:) zeros(1,m*p) 
zeros(1,m*p)]; 
%Upper Bound of Q 
UBQ = 2; 
LBQ = -1; 
  
ub = [SupC UBQ*ones(1,m*p) inf(1,m*p) DemC]'; 
lb = [zeros(1,n*p) LBQ*ones(1,m*p) -inf(1,m*p) zeros(1,m*p)]'; 
  
  
% Shortfall must be bounded between zero and demand, as slack cannot 
exceed the 
% demanded quantity of product supply. 
  
%QDem is initially bounded between zero and two.  As the system is 
%interdicted, QDem can become negative to denote the removal of 
commodities 
%from local storage nodes. 
  
  
Aeq; 
beq; 
  
Aineq; 
bineq; 
addpath('I:\setup\Desktop\CPEX\cplex\matlab\x64_win64') 
  
f = -f; 
  
  
ub = ub; 
lb = lb; 
    
    
   options = cplexoptimset; 
   options.Display = 'off'; 
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   [x, fval, exitflag, output] = cplexlp (f, Aineq, bineq, Aeq, beq, 
lb, ub, [ ], options); 
       
    
   %fprintf ('\nSolution status = %s \n', output.cplexstatusstring); 
   %fprintf ('Solution value = %f \n', fval); 
   %disp ('Values ='); 
   %disp (x'); 
  
   %Determine how much is added or removed from storage to meet daily 
demand 
StorAdj1 = zeros(m,1); 
StorAdj2 = zeros(m,1); 
StorAdj3 = zeros(m,1); 
StorAdj4 = zeros(m,1); 
  
  
for s = 1:m 
StorAdj1(s,1) = x((n*p)+(m*p)+s,1); 
StorAdj2(s,1) = x((n*p)+(m*p)+s+m,1); 
StorAdj3(s,1) = x((n*p)+(m*p)+s+2*m,1); 
StorAdj4(s,1) = x((n*p)+(m*p)+s+3*m,1); 
end 
StorAdj = [StorAdj1';StorAdj2';StorAdj3';StorAdj4']; 
  
  
%Measure the shortfalls of each commodity type 
SGas = zeros(m,1); 
SDiesel = zeros(m,1); 
SJetF = zeros(m,1); 
SFOil = zeros(m,1); 
  
for s = 1:m 
SGas(s,1) = x((n*p)+(2*m*p)+s,1); 
SJetF(s,1) = x((n*p)+(2*m*p)+s+m,1); 
SDiesel(s,1) = x((n*p)+(2*m*p)+s+2*m,1); 
SFOil(s,1) = x((n*p)+(2*m*p)+s+3*m,1); 
  
  
end 
Shortfall = Shortfall + [SGas; SJetF; SDiesel; SFOil]; 
  
if d < 21 
MGCrit = IStor(2,13) + IStor(3,13) + IStor(2,15) + IStor(3,15) + 
IStor(2,17) + IStor(3,17) + IStor(2,46) + IStor(3,46) + IStor(2,59) + 
IStor(3,59) + IStor(2,75) + IStor(3,75); 
UAStor = LBStorCap(2,13) + LBStorCap(3,13) + LBStorCap(2,15) + 
LBStorCap(3,15) + LBStorCap(2,17) + LBStorCap(3,17) + LBStorCap(2,46) + 
LBStorCap(3,46) + LBStorCap(2,59) + LBStorCap(3,59) + LBStorCap(2,75) + 
LBStorCap(3,75); 
else 
    MGCrit = 0; 
    UAStor = 0; 
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end 
MGAvail = MGAvail + (MGCrit - UAStor); 
  
end 
EXPMT(e,6) = MGAvail; 
IStor'; 
Shortfall'; 
  
    GShortfall = 0; 
    JShortfall = 0; 
    DShortfall = 0; 
    FShortfall = 0; 
     
for g = 1:m 
    GShortfall = Shortfall(g,1) + GShortfall; 
    JShortfall = Shortfall(g+m,1) + JShortfall; 
    DShortfall = Shortfall(g+2*m,1) + DShortfall; 
    FShortfall = Shortfall(g+3*m,1) + FShortfall; 
end 
  
TOTALS = [GShortfall; 
    JShortfall; 
    DShortfall; 
    FShortfall]; 
SUMTOTAL = GShortfall + JShortfall + DShortfall + FShortfall; 
VALLOST = 100*TOTALS' * PRICE; 
EXPMT(e,5) = VALLOST; 
EXPMT(e,7) = SUMTOTAL; 
  
end 
    %if r == 1 
    %EXPMT1 = EXPMT; 
    %elseif r == 2 
   % EXPMT2 = EXPMT; 
    %elseif r == 3 
   % EXPMT3 = EXPMT; 
   % else 
   % end 
%end 
  
PCDG = [zeros(784,32)]; 
PercDeg = [zeros(1,32)]; 
  
for j = 1:784 
     
[m,n] = size(aij); 
I = eye(m); 
IO = (I-aij); 
Resource = rij; 
ConsOP = C; 
ExRes = P; 
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VALLOST = 4*EXPMT(j,5)/1000000; 
Aineq = [IO;Resource; -IO]; 
bineq = [ConsOP; ExRes; zeros(m,1)]; 
fbuild = MaxOP; 
  
  
  
  
f = [ones(1,n)]; 
  
  
ub = [inf(1,n)]; 
ub(1,7) = 275482.846-VALLOST; 
lb = [zeros(1,n)]; 
  
  
Aineq; 
bineq; 
addpath('I:\setup\Desktop\CPEX\cplex\matlab\x64_win64') 
  
f = -f; 
  
  
ub = ub; 
lb = lb; 
    
    
   options = cplexoptimset; 
   options.Display = 'on'; 
    
   [x, fval, exitflag, output] = cplexlp (f, Aineq, bineq, [],[], lb, 
ub, [ ], options); 
       
    
   fprintf ('\nSolution status = %s \n', output.cplexstatusstring); 
   fprintf ('Solution value = %f \n', fval); 
   disp ('Values ='); 
   disp (x'); 
    
for g = 1:m    
PercDeg(1,g) = x(g,1)/MaxOP(1,g); 
PCDG(j,g) = PercDeg(1,g); 
end 
  
  
end 
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Appendix B. Mexico Input-Output Model (OECD, 2014)  

  

C01T05 
Agriculture, 

hunting, 
forestry and 

fishing

C10T14 
M ning and 
quarry ng

C15T16 Food 
products, 
beverages 

and tobacco

C17T19 
Textiles, 
textile 

products, 
leather and 

footwear

C20 Wood 
and products 
of wood and 

cork

C21T22 Pulp, 
paper, paper 

products, 
printing and 
publish ng

C23 Coke, 
ref ned 

petroleum 
products and 
nuclear fuel

C24 
Chemicals 

and chemical 
products

C25 Rubber 
and plastics 

products

C26 Other 
non-metallic 

mineral 
products

C27 Basic 
metals

C28 
Fabricated 

metal 
products 
except 

machinery 
and 

equipment

C29 
Machinery 

and 
equipment 

n.e.c 

C30 Off ce, 
accounting 

and 
computing 
mach nery

C31 Electrical 
machinery 

and apparatus 
n.e.c

C34 Motor 
veh cles, 

trailers and 
semi-trailers

Row Sector i

C01T05 Agriculture, hunt ng, 
forestry and f shing 50573 06669 1.740573509 194206.9139 9856.769339 9509 756321 32.89344964 10.5313423 1794.674451 487.2864306 441 3841074 1.729945648 13.63495862 3.060514285 29.11387825 8.003124928 150.4099937

C10T14 Min ng and quarrying 106.3086275 7672.073741 1126.817217 118 6776672 9.00774192 90.11421542 158712.152 88475.4184 59.37414437 11333.07001 17781.94064 83.34216195 243.0569374 169.3435244 157.7253221 197 9369063

C15T16 Food products, 
beverages and tobacco 33278 70853 222.4224148 112593.0889 4705.413385 49.58915033 491.768614 81.36711771 1554.487224 211.4776355 226 2023401 232.9115405 170.2447114 111.3816414 419.46996 126.1243724 673.4221462

C17T19 Textiles, textile 
products, leather and footwear 903.2449808 54.22247439 2330.710955 79273.20545 132.6317463 3043.748469 178.6388905 979.113383 2440.670473 770 6698505 1173.420218 982.9575459 765.5737187 4389.815117 2009.990154 18670.15176

C20 Wood and products of wood 
and cork 270.0815135 767 9935307 225.7208165 217.022106 4941.40219 209.4566048 39.65836178 209.1008637 145.3766916 487.1625708 185.2983322 247.5225715 133.2213812 2828.137067 535.8995913 1112.234028

C21T22 Pulp, paper, paper 
products, printing and publishing

965.353492 52.070117 11184.76253 3047.020244 167.8005319 28425.38177 232.2107127 3837.065585 2057.763857 2950.115592 504.5391518 1162 283422 732.8469199 6776 53662 2375.742963 3267.299007

C23 Coke, refined petroleum 
products and nuclear fuel 353.1194083 4332.049779 7657.266447 1133.851069 462.3523855 1132.60416 2315.84744 5998.894051 593.5326973 4082.520309 5788.292981 719.1725868 291.9824433 476.6467999 649.569077 1625.490759

C24 Chemicals and chemical 
products 18213 78528 20111.01527 18302.61746 6596.565292 614.5484452 6344.247268 12414.42034 78689.4711 25463.03578 6325.177325 2967.954309 2552 560789 2374.082346 10722 26421 4606.442874 11384.16014

C25 Rubber and plastics 
products 3018.139745 320 9984708 16296.01777 4556.673951 182.1514695 2898.488864 571.7991339 2986.196563 6166.750087 1050.778063 691.4366645 2322 666939 2201.530177 20218 55091 8938.874702 33037.23754

C26 Other non-metallic mineral 
products 77 98714805 1828.781013 6854.204878 215 7727714 111.4666305 293.1406389 33.40244594 754.4315694 268.1979401 9949.711254 529.3664998 935.4016745 367.4280174 4456.650472 1777.297413 4315.423115

C27 Basic metals 266.2813232 4846.539894 316.3334701 636 2479589 72.12281375 352.1596204 159.6858557 782.4001202 2658.223054 1531.31838 58718.31183 27599.18535 8777.379008 14161 96744 18143.16468 30248.62506

C28 Fabricated metal products 
except machinery and 
equipment 1909.938967 934 0410399 3328.979407 1455.718712 233.5434263 347.2442791 1581.655908 964.7715599 2044.661488 637 2068812 1349.103729 8297 966296 3229.906463 8120.227125 6349.4161 17405.17423

C29 Machinery and equipment 
n.e.c 250.0468611 873 0519691 881.7343191 949.887385 139.1066036 365.1814676 1333.146688 576.9626995 1028.441234 409.1192599 896.107605 1809.485291 6103.032444 6161.756719 3335.181306 7811.571331

C30 Office, accounting and 
comput ng machinery 168 29856 167.4600983 970.0987219 1518.893112 73.88186452 1015.891186 339.6531654 2007.025641 2946.994396 1313.224028 692.3255087 2603 204696 4778.872817 203518.9994 14870.45645 27128.53887

C31 Electrical machinery and 
apparatus n.e.c 137.0783431 120 6408624 359.7249389 1353.797308 43.92117501 515.8857708 198.3469301 409.4814834 2307.061683 644 5443374 1060.946107 2447 888499 4026.921699 43535 59314 27973.5716 32977.96282

C34 Motor vehicles, trailers and 
semi-trailers 1672.673911 1427.65153 5354.29756 2886.779074 169.1247678 1213.187231 318.8812865 1695.648851 1846.351952 1710.988447 3018.384417 1943.31878 1634.801007 5471.579101 3015.455214 152776.1423

C36T37 Manufacturing n.e.c; 
recycling 201.3410011 166 0133463 1011.176253 2341.831866 134.8780592 525.1204455 92.9816872 1296.647156 798.7936272 573 2611519 425.7548908 655.0079865 404.1344459 3648 69346 1538.549943 1825.461108

C40T41 Electric ty, gas and 
water supply 5027.762336 2897.385138 11563.41046 3273.396217 499.8228793 2631.504707 312.5289145 3604.895933 2409.886999 3896.504686 7353.543426 1577 813982 690.7579501 2703.527529 1604.289282 3932.282046

C45 Construction 910.9032244 348.4826271 2263.26349 226 6336193 7 590042079 63.18903907 643.460937 452.5146759 145.5414288 250 9638007 85.36795117 117.3318496 59.98613151 615.3306974 407.911531 854 7626121

C50T52 Wholesale and retail 
trade  repairs 24570 81105 13669 6079 83341.37126 14882.00011 3169 654733 10571.71104 4960.202179 28002.5638 9473.699904 11476 8404 21137.58392 9285 679308 5709.874026 14461 54121 8374.349914 68611.7303

C55 Hotels and restaurants 72 84568803 1172.417603 1263.111757 1421.840272 52.21343678 241.5382754 99.22229397 1352.849521 468.8634808 264 6441945 218.9887602 508.2352426 341.3550254 2642.099948 1028.037019 2636.539069

C60T63 Transport and storage 8608.568357 5532.498679 28722.76181 5333.030579 1355 977349 4698.763736 1620.399426 9518.048579 3608.090091 3685.673528 4846.22699 2525.420064 1854.632629 7643 99178 3552.543798 16619.57422

C64 Post and 
telecommunications 1463.901657 1077.308956 6373.5923 964 7072113 132.3793761 977.9292557 306.8365736 6170.627863 618.8348689 922 5928186 214.8736137 789.2926853 419.2675898 1522.469895 493.7081326 3020.406948

C65T67 Finance and insurance 5730.628607 12378.11491 6319.967279 1142.604152 108.9006636 1298.886965 1482.458624 4227.313375 535.1067287 1375.845904 966.9299702 896.3420306 478.9991371 550.5699741 467.9309325 2954.729876

C70 Real estate activities 108.0383124 358 0641888 5163.963479 2467.565946 196.1869351 1519.700317 198.874583 2184 31626 1755.096693 1247.893261 470.4488433 1262 037142 686.5959553 2053.981903 1268.971905 2290.269479

C71 Rent ng of machinery and 
equipment 851.6396777 8365.274834 4171.706138 449 2565722 20.23863228 668.1097482 157.4231763 3367.696969 609.97813 891.1278339 223.2468874 332.1833408 772.1682878 1606.534074 499.9129426 3267.126328

C72 Computer and related 
activities 17 91310126 19 2425037 82.97530642 15.30530366 1 940599632 11.66638215 3.466236702 29.41295035 11.77961858 9.22501443 4.115085485 11.68295978 8.579490523 16 71383128 5.984403226 15.13581396

C74 Other Business Activities 5867.145984 10237.37964 30753.92364 7414.378734 425.1069233 4857.978512 12941.00075 16645 93949 4926.813692 6513.843371 3593.064562 4043 518481 2797.77532 10153.15277 3557.287596 11647.85169

C75 Public adm n. and defence; 
compulsory social security

0.239 0.031 0 0 0 0 0 0 0 0 0 0 0.137 0 0 0

C80 Education 0.919370761 1.700074886 112.00996 12.10260036 0 672995181 17.06053494 4.125848286 157.5607006 6.22091987 17.73951995 1.944669766 8 201468107 5.296089393 10 99205506 7.182307205 61.21619245

C85 Hea th and social work 12 35638504 6.701690592 48.19431693 10.72743656 1 889756821 6.857780731 2.686730282 17.15864015 6.681725053 6.46204738 10.37319651 6 075513996 3.617574857 10.17266162 5.668851734 38.05036861

C90T93 Other community, social 
and personal serv ces 45 80025991 274.4119478 224.7964779 38 9480195 4.192790763 46.98495155 8.596515269 113.085911 27.07934671 32.00783524 19.56530566 19.2687091 24.41296585 61 37820998 29 83165885 115.2482987

Domestic purchases by non-
residents 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Non-comparable imports(cif/fob 
adj, D rect purchases abroad by 
residents) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total Imports 59499.256 10852.999 84481.445 115179.338 11204 714 51746.998 32929.549 211888.122 116410.733 20520.524 94648.721 84680 515 146326.769 383923.134 167072.019 257406.742

Total Intermediate consumption 
/final use at basic prices

165654.9274 100237 3878 563405.5133 158516.6235 23024.05244 74908.39529 201355.6621 268855.7754 76127.6668 75027.81813 135164.0975 75928.92704 50032.66715 379157.8014 117715.0752 460672.1644

Taxes, less subsidies, on 
products 1798.624145 1013.264796 1640.986318 1132.775703 157.6371308 404.7546048 638.7870891 1780.546169 292.9029837 970 2463302 1535.325894 340.6995746 250.161514 325.2129851 303.9909502 1531.989287

VALU Value added at basic 
prices 279600.6177 439201 5894 370036.8844 85265.74584 17044.08043 40421.42409 40558.84778 132993.1805 37027.58222 85213.31554 77290.66458 40350.85939 30266.07333 74602 02058 41394 05088 202929 2614

GOPS Gross Operating Surplus 229272.4097 148859 8764 278267.1244 46737.26684 11336.31943 24369.12209 23305.04778 83815 53846 19733.65022 60978.92954 58009.94658 21871.20939 8200.946333 42445 59558 21561 58588 131423 6564

LABR Compensation of 
Employees 50211.942 34662.957 89920.16 37749.493 5660.52 15552.005 17206.066 47149.952 16812.949 23891.135 18899.035 17981 395 21674.198 31406.196 19363.695 70576.748

OTXS Other taxes, less 
subsidies, on product on 116.266 255678.756 1849.6 778.986 47 241 500.297 47.734 2027 69 480.983 343.251 381.683 498 255 390.929 750.229 468.77 928.857

PROD Gross output (Production) 
at bas c pr ces 453763.438 540452.242 935083.384 244915.145 40225.77 115734.574 242553.297 403629.502 113448.152 161211.38 213990.088 116620.486 80548 902 454085.035 159413.117 665133.415

Currency National currency, million

Column Sector

Country Mexico
Variable Total

Period Period mid-2000s
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C36T37 
Manufacturing 

n.e.c; 
recycling

C40T41 
Electr city, 

gas and water 
supply

C45 
Construct on

C50T52 
Wholesale 
and retail 

trade; repairs

C55 Hotels 
and 

restaurants

C60T63 
Transport and 

storage

C64 Post and 
telecommunic

ations

C65T67 
Finance and 

nsurance

C70 Real 
estate 

activities

C71 Renting 
of mach nery 

and 
equipment

C72 
Computer and 

related 
activities

C74 Other 
Bus ness 
Activities

C75 Publ c 
admin. and 
defence; 

compulsory 
social security

C80 Educat on C85 Health 
and social 

work

C90T93 Other 
community, 
social and 
personal 
services

Total 
Intermedi

ate 
Consumpt

ion

Household
s Final 

Consumpt
ion HHFC

General 
Governme

nt Final 
Consumpt
ion GGFC

Gross 
Fixed 

Capital 
Format on 

GFCF

Changes 
in 

Inventorie
s CHINV

Exports 
EXPO

226.3020803 2.30340943 1861.410267 307.431051 70.34519043 3.151082258 1.267418081 0 319232374 0.956259595 2.698937999 0.020743805 22.42601604 4.303495802 10.3169221 10.05687631 19.23064945 269663.509 181911.079 0.05251916 9700.15492 16616.3179 35371.5811

927.9268366 3913 868854 12097.75952 60 35055695 117.5844659 32.34417428 7.48092534 3.143093919 280.7514701 1.152110521 0.20252638 34.54354718 5.897911024 4 098276731 5.319148494 6.953828653 303835.737 466.757609 0 03397938 59861.1564 3492.55457 183649.002

155.7748424 302.2509463 735.3122841 3498.498483 5283.18744 1096.952528 231.7878301 115.4232811 148.3052514 131.7742369 38.19015401 1090.276677 248.8994455 555.1398122 563.1108094 793.3553981 170136.319 737052.461 0.05485355 1931.52384 70769.7857 39674.6848

6441.400909 216.2140243 697.1572298 8085.886121 1187.086111 2423.542153 301.5929535 26.88552584 147.8493131 76 71732274 10.24120419 1364.671741 1735.224843 265.2493757 779.5620789 981.139801 142839.186 98546.1531 0.49590852 440.53697 12819.3121 105448.799

5982.011173 10.04683014 7644.273129 13250 70841 14.27607039 64.51448954 32.821951 4.401444152 31.86852304 2.15918827 0.354758569 33.41180113 6.2247044 12.71324901 53.55046849 21.89941878 39720.5238 6589 54581 0.00389256 93.4252225 2408.64377 2618.34148

3400.391857 267.0186563 1255.182593 6735.272536 1445.381904 4018.58393 1414.467523 1991.10991 5135.307236 158.6255979 46.579261 14750.31993 3718.622879 1858 303172 1142.425293 2060.651179 117137.036 25528.3736 1688.11123 252.842496 9445.60991 13429.5988

1143.576656 16821.74266 10067.80173 2407.950497 2726.588887 65070.50017 4733.382538 18.17652245 1464.237838 370.0775342 15.26322883 2851.504185 4744.077347 404.9252803 1198.030848 1035.050333 159395.347 74406.1838 0.00036269 673.95998 25259.4741 15747.8804

5951.662126 37211.64231 14006.47255 10405.43 6683.651976 6713.215381 946.3438482 43.20620799 6750.090869 508.2489259 99.56303135 13550.26369 4376.13243 908.0236853 19326.56969 7873.077872 363035.943 145156.538 1.18242064 1815.40482 57483.5666 48024.9894

7290.563135 238.8930295 22088.14171 8263.697233 1832.505123 5932.796052 337.7000503 26.83840782 310.2388206 140.6139066 49.44055535 6156.975587 126.1144328 268.1387471 908.5029818 1497.730584 160927.181 18420.1616 3.72114869 780.797561 14096.8799 35630.1434

1622.400333 139.2939772 77165.55082 3663.9696 431.9398285 1313.537039 407.9439595 4 027569271 1077.720437 31.41628267 0.871901282 359 8949068 627.6681625 40.7137446 28.42826575 307.2372349 119991.278 31670 98 0.00519499 442.03713 10288.0627 19339.5414

6604.561409 791.7462403 65297.72987 3086.043735 108.2444733 1185.824461 1826.716478 3 942412508 817.4603406 80 66772184 36.70189842 294 0015185 77.02951356 44.1610976 23.79281685 52.60683413 249601.177 3194 76688 0.00071266 1676.95739 20102.077 34063.8303

3035.670292 1470 539266 29394.58958 10539 28749 510.7069693 2267.324841 1751.095548 1803.415938 602.2809239 183.974684 31.7565789 7284.882534 563.7081304 358.7025528 172.5804963 332.2947189 118492.366 21297.303 0.40422573 7832.35966 10765.8345 42912.7335

1923.076069 1028 063168 6495.896995 7428.512865 85.98637215 1148.703037 120.1337244 23.82240147 299.5693545 499.1906517 3.772266683 350 2953996 343.1871815 76.85203228 90.50184977 262.5294922 53103.906 4138 07979 0.18186765 123278.551 5628.64489 40726.3079

6901.625098 764.9052107 2188.138747 32240 57614 296.1669472 1630.364711 10496.48377 133.0416714 1085.638582 233.742176 34.57763089 4606.132209 1784.90787 735.3216796 5346 990383 470.4134087 333062.845 39167.0149 21.5535914 71014.5092 14139.7579 380602.489

2848.2049 384.6343049 14181.30491 6199.528667 100.9838086 460 6743519 4512.238938 25.06729154 870.8989974 73.3161176 71.63758502 536 5065202 654.5002628 118.6153255 421.5538322 99.913575 149672.946 28402.4842 0.58217488 31784.0768 8378.96064 108246.086

1141.931605 614.0267175 2917.838917 17584 58334 1399.172884 26684.61461 809.7750009 1219 764536 718.9827639 621.4477644 51.55110161 5340.928526 1112.774936 1108 301133 667.8934353 1596.798092 249745.651 162120.487 20.5241464 115643.328 9006.91125 386003.255

5522.119022 290.8013265 3057.691663 5558.254597 373.1045733 1343.578853 292.6820529 562.2058542 803.4674052 233.7358407 24.59177662 1353.34407 891.9369478 535.0928369 3615 758699 1226.433986 41324.4459 50459.1101 9.05903161 11538.2957 6703.89476 60268.4514

1415.070055 32594.00882 2941.128484 15827 24404 10617.81359 4341.081074 1758.836311 834.1139501 8054.288783 222.7982939 60.86264898 3433.285826 7431.971648 2740.58645 3540 545957 2956.915472 152749.864 84141.1536 0.04921239 1087.32422 2.65447219 882.479622

164.1751641 571 287674 61721.27303 529.4205229 841.651075 1043.155511 36.27689042 503.2850286 3239.975893 17 79181931 11.19064214 575 5398114 1584.997467 1093.411925 416.454008 130.9762697 79934.0964 1181.9243 28.7384118 868939.233 0 0

6703.236905 21620.09044 68529.10987 40340 60105 7180.368595 48174.69923 8845.608403 3628 711914 7331.608197 1049.553491 154.6957314 17517.07068 11191.93045 3176 571711 10155.37787 5165.383218 592463.839 707879.754 6.13711363 87339.031 951.853206 175813.92

766.2742748 665.1303588 3033.490509 645.564458 245.3612657 4811.755626 455.7629392 1325 349523 307.3871241 88 39183649 40.49732687 4017.222024 5138.66871 959.1419224 945.4968938 318.7537527 37549.0501 250431 25 275.847006 1637.17088 17.1077846 267.942169

2989.942137 8921.181851 22158.63405 13715 07405 2898.107272 24158.86025 7192.45581 1682 972966 2814.129629 360.8273372 66.5961025 8477.380209 4905.416063 1401.38783 3125 380682 2733.859302 217328.407 522740.845 0 05592577 20709.3893 7.67795487 55549.8421

802.8947968 972.2520388 5659.901148 19609.19327 5001.437695 6568.571867 19326.19731 7401 634184 8079.536819 614.8199965 190.8704695 16245.60572 9703.364217 8489.184177 2717.462781 6150.412786 143002.069 158132.823 67.2113265 470.225362 45.0202654 8908.6929

403.4272092 4313 662661 7533.804267 45135.11454 5569.342234 24760 6444 6344.349014 38306.99036 3461.974975 700.2799882 34.61060631 5841.444121 8838.5085 792.2177955 461.3430062 2044.549187 195457.592 93423.3819 30057.9791 0 0 12574.398
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